![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. | Прямая пропорциональность. Если переменные y и x прямо пропорциональны, то функциональная зависимость между ними выражается уравнением:
y = k x,
где k - постоянная величина (коэффициент пропорциональности).
График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол ![]() ![]() ![]() |
2. | Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:
A x + B y = C,
где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия. Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A, B, C показаны на рис.9.
![]() |
3. | Обратная пропорциональность. Если переменные y и xобратно пропорциональны, то функциональная зависимость между ними выражается уравнением:
y = k / x,
где k - постоянная величина.
График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью. Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k, что следует из уравнения гиперболы: xy = k.
![]() ![]() ![]() |
4. | Квадратичная функция. Это функция: y = ax 2 + bx + c, где a, b, c - постоянные, a ![]() ![]() ![]() |
Изобразите, пожалуйста, квадратную параболу для случая a > 0, D > 0.
Основные характеристики и свойства квадратной параболы:
- область определения функции: - < x < +
(т.e. x
R), а область
значений: … (ответьте, пожалуйста, на этот вопрос сами!);
- функция в целом не монотонна, но справа или слева от вершины
ведёт себя, как монотонная;
- функция неограниченная, всюду непрерывная, чётная при b = c = 0,
и непериодическая;
- при D < 0 не имеет нулей. (А что при D 0?).
5. | Степенная функция. Это функция: y = axn, где a, n – постоянные. При n = 1 получаем прямую пропорциональность: y = ax; при n = 2 - квадратную параболу; при n = -1 - обратную пропорциональность или гиперболу. Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a, т.e. её график - прямая линия, параллельная оси Х, исключая начало координат (поясните, пожалуйста, почему?). Все эти случаи (при a = 1) показаны на рис.13 (n ![]() ![]() ![]() ![]() ![]() ![]() |
6. | Показательная функция. Функция y = ax, где a - положительное постоянное число, называется показательной функцией. Аргумент x принимает любые действительные значения; в качестве значений функции рассматриваются только положительные числа, так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = -3, y = 3 i и y = -3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х, т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает.
![]() ![]() ![]() ![]() ![]() ![]() |
7. | Логарифмическая функция. Функция y = log ax, где a – постоянное положительное число,не равное 1, называется логарифмической. Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8. | Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов.Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой.
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9. | Обратные тригонометрические функции. Определения обратных тригонометрических функций и их основные свойства.
Определения. arcsin x – это угол, синус которого равен x. Аналогично определяются функции arccos x, arctan x, arccot x, arcsec x, arccosec x. Эти функции являются обратными по отношению к функциям sin x, cos x, tan x, cot x, sec x, cosec x, поэтому они называются обратными тригонометрическими функциями. Все обратные тригонометрические функции являются многозначными функциями, то есть каждому значению аргумента соответствует бесчисленное множество значений функции. Так, например, углы 30°, 150°, 390°, 510°, 750° имеют один и тот же синус.
Главное значение arcsin x – это его значение, которое находится между - ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24)многозначные, неограниченные; их область определения и область значений соответственно: -1 x
+1 и -
< y < +
. Поскольку эти функции многозначные,не рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения: y = arcsin x и y = arccos x; их графики выделены на рис.23 и рис.24 жирными линиями.
Функции y = arcsin x и y = arccos x обладают следующими характеристиками и свойствами:
- у обеих функций одна и та же область определения: -1 x
+1;
их области значений: - /2
y
/2 для y = arcsin x и 0
y
для y = arccos x;
- функции ограниченные, непериодические, непрерывные и монотонные
(y = arcsin x – возрастающая функция; y = arccos x – убывающая);
- каждая функция имеет по одному нулю (x = 0 у функции y = arcsin x и
x = 1 у функции y = arccos x).
Функции y = Arctan x (рис.25) и y = Arccot x (рис.26)- многозначные, неограниченные; их область определения: -
x
+
. Их главные значения y = arctan x и y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.
Функции y = arctan x и y = arccot x имеют следующие характеристики и свойства:
- у обеих функций одна и та же область определения: -
x
+
;
их области значений: - /2< y <
/2 для y = arctan x и 0 < y <
для y = arccos x;
- функции ограниченные, непериодические, непрерывные и монотонные
(y = arctan x – возрастающая функция; y = arccot x – убывающая);
- только функция y = arctan x имеет единственный ноль (x = 0);
функция y = arccot x нулей не имеет.
10. Гиперболические функции.
Дата публикования: 2015-01-10; Прочитано: 396 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!