Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Ответ №32



1. Интегралы вида Для решения данных интегралов применяются формулы преобразования произведения тригонометрические функций в сумму или разность:     2. Интегралы вида Здесь и везде ниже предполагается, что m и n - натуральные числа. Для вычисления таких интегралов используются следующие подстановки и преобразования: Если степень косинуса n – нечетная (при этом степень синуса m может быть любой), то используется подстановка .   Если степень синуса m - нечетная, то используется подстановка .   Если степени m и n - четные, то сначала применяются формулы двойного угла   чтоб ы понизить синуса или косинуса в подынтегральном выражении. Затем, если необходимо, применяются правила a) или b).   3. Интегралы вида Степень подынтегрального выражения в данном интеграле можно понизить с помошью тригонометрического соотношения и формулы редукции 4. Интегралы вида Здесь степень подынтегрального выражения понижается с помошью соотношения и формулы редукции 5. Интегралы вида Данный тип интеграла упрощается с помощью следующей формулы редукции: 6. Интегралы вида Аналогично предыдущим пунктам, интеграл упрощается с помощью формулы 7. Интегралы вида Если степень секанса n - четная, то c помошью   соотношения секанс выражается через тангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате весь интеграл (включая дифференциал) выражается через функцию tg x.   Е Если обе степени n и m - нечетные, то отделяется множитель sec x tg x, необходимый для преобразования дифференциала. Далее весь интеграл выражается через sec x.   Если степень секанса n - нечетная, а степень тангенса m - четная, то тангенс выражается через секанс с помощью формулы . Затем вычисляются интегралы от секанса.   8. Интегралы вида Если степень косеканса n - четная, то c помошью соотношения косеканс выражается через котангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате подынтегральная функция и дифференциал выражаются через ctg x.   Если обе степени n и m - нечетные, то отделяется множитель ctg x cosec x, необходимый для преобразования дифференциала. Далее интеграл выражается через cosec x.   Если степень косеканса n - нечетная, а степень котангенса m - четная, то котангенс выражается через косеканс с помощью формулы . Далее вычисляются интегралы от косеканса.
 
 
 




Дата публикования: 2015-01-10; Прочитано: 174 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...