![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|


Рассмотрим плоскость с прямоугольной системой координат. Каждому комплексному числу
сопоставим точку плоскости с координатами
(а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней занимают горизонтальную ось, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями.
Часто бывает удобно рассматривать на комплексной плоскости также полярную систему координат, в которой координатами точки являются расстояние до начала координат (модуль) и угол радиус-вектора точки (показанного синей стрелкой на рисунке) с горизонтальной осью (аргумент).
В этом наглядном представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются. Если модуль второго сомножителя равен 1, то умножение на него геометрически означает поворот радиус-вектора первого числа на угол, равный аргументу второго числа. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза».
Геометрическая модель комплексных чисел широко используется в планиметрии: многие планиметрические теоремы можно доказать как некоторые комплексные тождества. Часто этот метод даёт наиболее простое доказательство.
Сопряжённые числа


Если комплексное число
, то число
называется сопряжённым (или комплексно сопряжённым) к
(обозначается также
). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком.
Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.
·
(сопряжённое к сопряжённому есть исходное).
· 
· 
· 
· 
Формула Муавра для комплексных чисел
утверждает, что
для любого 
Дата публикования: 2015-01-13; Прочитано: 305 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
