![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Дельта. Но зачем же принимать контрапример? Вы доказали вашу догадку — теперь она стала теоремой. Я принимаю, что она не согласна с этим так называемым контрапримером. Кто-то из них должен уйти. Но почему же должна уходить теорема, если она была доказана? Нужно отступить «критике». Это поддельная критика. Пара всаженных кубов совсем не будет многогранником. Это монстр, патологический случай, а не контрапример.
Гамма. А почему нет? Многогранником называется тело, поверхность которого состоит из многоугольников — граней. А мой контрапример является телом, ограниченным многоугольниками — гранями.
Учитель. Назовем это Определение 1 [21].
Дельта. Ваше определение неправильно. Многогранник должен быть поверхностью: он имеет грани, ребра, вершины, он может быть деформирован, растянут на доске и ему нет никакого дела до понятия о «твердом теле». Многогранник есть поверхность, состоящая из системы многоугольников.
Учитель. Назовем это Определение 2 [22].
Дельта. Таким образом, в действительности вы показали нам два многогранника, две поверхности, одна полностью внутри другой. Женщина с ребенком во чреве не может быть контрапримером для тезиса, что люди имеют одну голову.
Альфа. Так! Мой контрапример породил новое понятие о многограннике. Вы осмеливаетесь утверждать, что под многогранником всегда подразумеваете поверхность?
Рис. 6
Учитель. В данный момент позволим себе принять определение 2 Дельты. Можете вы опровергнуть наше предположение, если под многогранником мы теперь будем понимать поверхность?
Альфа. Конечно. Возьмите два тетраэдра, имеющие общее ребро (рис. 6, а). Или возьмите два тетраэдра, имеющие общую вершину (рис. 6, б). Оба эти близнеца связаны, оба составляют одну единственную поверхность. И вы можете проверить, что в обоих случаях V — Е + F = 3.
Учитель. Контрапримеры 2, а и 2, б [23].
Дельта. Я восхищаюсь вашим извращенным воображением, но, конечно, я не считал, что любая система многоугольников будет многогранником. Под многогранником я подразумеваю систему многоугольников, расположенных таким образом, чтобы (1) на каждом ребре встречались только два многоугольника и (2) чтобы было возможно изнутри одного многоугольника пройти во внутрь другого любой дорогой, которая никогда не пересекает ребра в вершине. Ваши первые близнецы исключаются первым критерием моего определения, ваши вторые близнецы — вторым критерием.
Учитель. Определение 3 [24].
Альфа. Я восхищаюсь вашим извращенным остроумием, изобретающим одно определение за другим, как баррикады против уничтожения ваших любимых идей. Почему бы вам не определить многогранник как систему многоугольников, для которых имеет место уравнение V — Е + F = 2, и это Идеальное Определение...
Учитель. Определение И [25].
Альфа.... навсегда покончит с диспутом? Тогда уже не будет нужды в дальнейшем исследовании этого предмета.
Дельта. Но не существует на свете теоремы, которую нельзя было бы опровергнуть при помощи монстров.
Учитель. Извините, что прерву вас. Мы видели, что опровержение при помощи контрапримеров зависит от понимания рассматриваемых терминов. Если контрапример должен служить объективной критике, то нужно уговориться в понимании нашего термина. Мы можем достичь этого соглашения, определив термин, на котором оборвалось сообщение. Я, например, не определял понятия «многогранник». Я считал, что этот термин является общеизвестным, т. е. все заинтересованные обладают способностью отличить вещь, которая является многогранником, от вещи, которая им не является, - то, что некоторые логики называют знанием объема понятия «многогранник». Оказалось, что объем этого понятия совсем не является очевидным: очень часто определения даются и обсуждаются именно тогда, когда появляются контрапримеры.
Рис. 7
Я предлагаю теперь рассмотреть все соперничающие определения вместе и отложить пока обсуждение различий, получающихся в результате выборов разных определений. Может ли кто предложить что-нибудь такое, что можно считать действительно противоречащим примером даже по самому ограничивающему определению?
Каппа. Включая Определение И?
Учитель. Исключая Определение И.
Гамма. Я могу. Взгляните на этот контрапример 3: звездчатый многогранник — я назову его «морским ежом» (рис. 7). Он состоит из 12 звездных пятиугольников (рис. 8). Он имеет 12 вершин, 30 ребер и 12 пятиугольных граней — если хотите, вы можете проверить это подсчетом. Таким образом, положение Декарта-Эйлера совершенно неправильно, так как для этого многогранника V — Е + F = —6 [26].
Дельта. А почему вы думаете, что ваш «морской еж» будет многогранником?
Гамма. Разве вы не видите? Это многогранник, гранями которого являются двенадцать звездчатых пятиугольников. Он удовлетворяет вашему последнему определению: это — «система многоугольников, расположенных таким образом, что (1) на каждом ребре встречаются только два многоугольника и (2) из каждого многоугольника можно попасть в любой другой многоугольник без перехода через вершину многогранника».
Дельта. Но тогда вы даже не знаете, что такое многоугольник! Звездчатый пятиугольник наверняка не будет многоугольником. Многоугольником называется система ребер, расположенных таким образом, что (1) в каждой вершине встречаются только два ребра и (2) ребра не имеют общих точек, кроме вершин.
Учитель. Назовем это Определение 4.
Гамма. Я не понимаю, почему вы включаете второе условие: 'Правильное определение многоугольника должно содержать только первое условие.
Учитель. Определение 4'.
Гамма. Второе условие не имеет ничего общего с сущностью многоугольника. Смотрите: если я немножко подыму одно ребро, то звездчатый многоугольник все же будет многоугольником, даже в вашем смысле. Вы воображаете многоугольник, начерченный мелом на доске; но его должно представлять себе как структуру из дерева: тогда то, что вы считаете общей точкой, в действительности будет, очевидно, не точкой, но двумя различными точками, лежащими одна над другой. Вас ввело в заблуждение, что вы помещаете многоугольники в плоскость,— вы должны позволить его членам простираться в пространстве [27].
Дельта. Не скажете ли вы мне, что такое площадь звездчатого многоугольника? Или вы думаете, что некоторые многоугольники не имеют площади?
Гамма. Да ведь вы же сами сказали, что понятие о многограннике может быть совсем не связано с идеей телесности. Почему же теперь вы полагаете, что понятие о многоугольнике должно быть связано с понятием о площади? Мы согласились, что многогранник представляет собой замкнутую поверхность с ребрами и вершинами — тогда почему бы нам не согласиться, что многоугольник будет просто замкнутой кривой с вершинами? Но если вы придерживаетесь нашей идеи, то я охотно определю площадь звездчатого многоугольника[28].
Учитель. Оставим на некоторое время этот диспут и пойдем, как и раньше. Рассмотрим вместе два последних определения — Определение 4 и Определение 4'. Может ли кто-нибудь дать контрапример для нашего предположения, которое допускало бы оба определения многоугольников?
Альфа. Вот вам один. Рассмотрим раму картины вроде такой (рис. 9). По всем предложенным до сих пор определениям это будет многогранник. Однако после подсчета вершин, ребер и граней вы найдете, что V — Е + F = 0.
Учитель. Контрапример 4 [29].
Бета. Ну, это конец нашей догадке. Очень жаль, потому что она во многих случаях была подходящей. Но, по-видимому, мы напрасно потеряли время.
Альфа. Дельта, я поражен. Вы ничего не говорите? Вы не можете этот новый контрапример выопределить из существования? Я думал, что на свете не существует гипотез, которых вы не смогли бы спасти от уничтожения при помощи подходящей лингвистической хитрости. Сдаетесь вы теперь? Наконец, соглашаетесь, что существуют неэйлеровы многогранники? Не поверю!
Дельта. Нашли бы вы лучше более подходящее имя для ваших неэйлеровых чудовищ и не путали нас, называя их многогранниками. Но я постепенно теряю интерес к вашим монстрам. Меня берет отвращение от ваших несчастных «многогранников», для которых неверна прекрасная теорема Эйлера[30]. Я ищу порядка и гармонии в математике, а вы только распространяете анархию и хаос[31]. Наши положения непримиримы.
Альфа. Вы настоящий старомодный консерватор! Вы браните скверных анархистов, портящих ваш «порядок» и «гармонию» и вы «решаете» затруднения словесными рекомендациями.
Учитель. Послушаем последнее спасительное определение.
Альфа. Вы подразумеваете последний лингвистический трюк, последнее сжатие понятия «многогранник»? Дельта разрушает реальные задачи, вместо того чтобы разрешать их.
Дельта. Я не «сжимаю» понятий. Это вы расширяете их. Например, эта картинная рама совсем не настоящий многогранник.
Альфа. Почему?
Дельта. Возьмите какую-нибудь точку в «туннеле» — пространстве, ограниченном рамой. Проведите плоскость через эту точку. Вы найдете, что всякая такая плоскость будет всегда с картинной рамой иметь два поперечных сечения, составляющих два отдельных, совершенно не связанных многоугольника! (рис. 10).
Рис. 11
Альфа. Ну и что?
Дельта. В случае настоящего многогранника через любую точку пространства можно провести по крайней мере одну плоскость, сечение которой с многогранником будет состоять из одного лишь многоугольника. В случае выпуклого многогранника этому требованию будут удовлетворять все плоскости, где бы мы ни взяли точку. В случае обыкновенного невыпуклого многогранника некоторые плоскости будут иметь большее число пересечений, но всегда будут такие, которые имеют только одно пересечение (рис 11,а и 11,6). В случае этой картинной рамы все плоскости будут иметь два поперечных сечения, если мы возьмем точку внутри рамы. Как же тогда вы можете назвать это многогранником?
Учитель. Это похоже на еще одно определение, выраженное на этот раз в неявной форме. Назовем его Определение 5 [32].
Альфа. Целая серия контрапримеров, подходящая серия определений, которые не содержат ничего нового, но представляют лишь новые откровения богатства одного старого понятия, которое кажется имеющим столько же «скрытых» требований, сколько и контрапримеров. Для всех многогранников V-E+F=2 кажется неопровержимой, старой и «вечной» истиной. Странно думать, что когда-то это было удивительной догадкой, исполненной вызова и волнения. Теперь же, вследствие ваших странных изменений смысла, оно превратилось в скудную условность, в вызывающую пренебрежение частицу догмы. (Он покидает классную комнату.)
Дельта. Я не могу понять, каким образом такой способный человек, как Альфа, может тратить свой талант на пустые словопрения. Он, кажется, весь поглощен производством монстров, но монстры никогда не способствовали росту ни в мире природы, ни в мире мысли. Эволюция всегда следует гармоническому и упорядоченному образцу.
Гамма. Генетики могут легко опровергнуть это. Разве вы не слышали, что мутации, производящие уродства, играют значительную роль в макроэволюции? Такие уродливые мутанты они называют «подающими надежды монстрами». Мне кажется, что контрапримеры Альфы, хотя и уродства, являются «уродами, подающими надежду»[33]
Дельта. Во всяком случае Альфа отказался от борьбы. Теперь никаких новых монстров больше уже не будет.
Гамма. У меня есть новый. Удовлетворяет всем ограничениям Определений 1, 2, 3, 4 и 5, но для него V—E+F=1. Этот контрапример 5 — простой цилиндр. У него 3 грани (оба основания и боковая поверхность), 2 ребра (оба круга) и нет вершин. Он многогранник по вашему определению: (1) у каждого ребра ровно по два многоугольника и (2) изнутри одного многоугольника можно пройти внутрь любого другого путем, не пересекающим ни одного ребра в вершине. И вам придется грани считать настоящими многоугольниками, так как они удовлетворяют вашим требованиям: (1) у каждой вершины встречаются только два ребра и (2) ребра не имеют общих точек, кроме вершин.
Дельта. Альфа растягивал понятия, а вы их режете. Ваши «ребра» — не ребра! Ребро имеет две вершины!
Дата публикования: 2014-11-28; Прочитано: 314 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!