![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
, (10)
является уравнением прямой, проходящей через две точки
и
.
Обозначим
,
координаты направляющего вектора прямой
, тогда (10) примет вид
, (11)
где
– точка на прямой. Уравнение (11) называется каноническим уравнением прямой. Введя параметр
, из (10) получим параметрические уравнения прямой
где
(12)
Уравнение прямой, проходящей через точку
перпендикулярно вектору
, имеет вид
. (13)
Вектор
– называется нормальным вектором прямой. Раскрывая в (13) скобки, получим общее уравнение прямой
.
Таким образом, в общем уравнении прямой, коэффициенты при
и
суть координаты нормального вектора прямой.
Пусть две прямые заданы уравнениями с угловыми коэффициентами
и
. Возможны следующие случаи их взаимного расположения:
1) прямые параллельны (в частности совпадают) тогда и только тогда, когда выполняется условие
;
2) прямые пересекаются в некоторой точке, тогда угол между ними находится по формуле
;
3) прямые перпендикулярны тогда и только тогда, когда
.
Пример. В равнобедренном прямоугольном треугольнике даны декартовы координаты вершины острого угла
и уравнение противолежащего катета
. Составить уравнения двух других сторон этого треугольника.
Дата публикования: 2014-11-18; Прочитано: 246 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
