Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Z-преобразование



При анализе и синтезе дискретных и цифровых устройств Z-преобразование играет такую же роль, как интегральные преобразования Фурье по отношению к непрерывным сигналам.

Пусть – числовая последовательность, конечная или бесконечная, содержащая отсчётные значения некоторого сигнала. Поставим ей в однозначное соответствие сумму ряда по отрицательным степеням комплексной переменной Z:

(5.9)

Эта сумма называется Z-преобразованием последовательности . Свойства дискретных последовательностей чисел можно изучать, исследуя их Z-преобразования обычными методами математического анализа.

На основании формулы (5.9) можно непосредственно найти Z-преобразования сигналов с конечным числом отсчётов. Так простейшему дискретному сигналу с единственным отсчётом соответствует Если же, например, , то

Рассмотрим случай, когда в ряде (5.9) число слагаемых бесконечно велико.

Возьмём дискретный сигнал образованный одинаковыми единичными отсчётами и служащий моделью обычной функции включения. Бесконечный ряд является суммой геометрической прогрессии и сходится при любых Z, |Z|>1. Суммируя прогрессию, получаем

Аналогично получается Z-преобразование бесконечного дискретного сигнала , где - некоторое вещественное число. Здесь

Данное выражение имеет смысл при |Z|>

Пусть x(z) – функция комплексной переменной Z. Замечательное свойство Z-преобразование состоит в том, что функция x(z) определяет всю бесконечную совокупность отсчётов ().

Действительно, умножим обе части ряда (5.9) на множитель :

(5.10)

а затем вычислим интегралы от обеих частей полученного равенства, взяв в качестве контура интегрирования произвольную замкнутую кривую, При этом воспользуемся фундаментальным положением из теоремы Коши:

Интегралы от всех слагаемых правой части обратятся в нуль, за исключением слагаемого с номером m, поэтому:

(5.11)

Данное выражение носит название обратное Z-преобразование.

Важнейшие свойства Z-преобразования:

1. Линейность. Если и - некоторые дискретные сигналы, причём известны соответствующие Z-преобразования x(z) и y(z), то сигналу будет отвечать преобразование при любых постоянных и . Доказательство проводится путём подстановки суммы в формулу (7.1).

2. Z-преобразование смещённого сигнала. Рассмотрим дискретный сигнал , получающийся из дискретного сигнала путём сдвига на одну позицию в сторону запаздывания, т.е. когда . Непосредственно вычисляя Z-преобразование, получаем следующий результат:

(5.12)

Таким образом, символ служит оператором единичной задержки (на один интервал дискретизации) в Z-области.

3. Z-преобразование свёртки. Пусть x(z) и y(z) – непрерывные сигналы, для которых определена свёртка:

(5.13)

Применительно к дискретным сигналам по аналогии с (7.5) принято вводить дискретную свёртку – последовательность чисел общий член которой:

(5.14)

Подобную дискретную свёртку называют линейной

Вычислим Z-преобразование дискретной свёртки:

(5.15)

Итак, свёртке двух дискретных сигналов отвечает произведение Z-преобразований.





Дата публикования: 2014-11-26; Прочитано: 674 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...