Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Получение для нелинейной САУ типовой структурной схемы



Чтобы структурную схему нелинейной САР привести к типовой (см. рис. 2.31), воспользуемся следующими соображениями:

· Так как система должна быть автономной, необходимо в исходной схеме отбросить и задающее воздействие, и возмущающий фактор с прилегающими к ним цепями.

· В связи с тем,что нелинейный элемент должен стоять в типовой схеме сразу же после главного сумматора, необходимо добавить в исходные схемы на входе нелинейного элемента еще один сумматор.

· Если нелинейный элемент имеет инерционность (как, например, тиристорный преобразователь), то коэффициент усиления реализуется в его статической характеристике, а инерционность остается отдельным звеном.

· Типовую схему нужно начинать рисовать с введенного сумматора.

· Дорисовываем за нелинейным элементом все остальные блоки исходной схемы, перемещаясь по ней по ходу движения задающего сигнала до введенного сумматора.

· Если в исходной схеме имеются местные обратные связи или дополнительные каналы регулирования, их тоже необходимо дорисовать.

Пример 2.13. Привести структурную схему САР частоты вращения ДПТ с нелинейной характеристикой ГПТ к типовой. Получить дифференциальное и характеристическое уравнения гармонически линеаризованной системы. Нелинейная характеристика ГПТ приведена на рис. 2.32.

Рис. 2.32. Нелинейная характеристика ГПТ типа «насыщение»

Для такой нелинейности коэффициенты линеаризации имеют вид

;

Решение.

Воспользуемся структурной схемой САР частоты вращения ДПТ, представленной на рис. 2.4; отбросим все воздействия; ГПТ представим как нелинейный элемент и инерционное звено с передаточной функцией . На входе НЭ добавим дополнительный сумматор (см. рис. 2.33).

Рис. 2.33. Структурная схема нелинейной САР частоты вращения ДПТ

Начинаем рисовать структурную схему с введенного сумматора и, перемещаясь по структурной схеме по ходу движения сигнала, вырисовываем все элементы системы (см. рис. 2.34).

Рис. 2.34. Приведение структурной схемы нелинейной САР к типовой

Получим передаточную функцию линейной части нелинейной системы

Используя уравнения и, запишем дифференциальное и характеристическое уравнения гармонически линеаризованной системы, соответственно

2.18 Использование метода Гольдфарба для оценки устойчивости нелинейной САУ

Анализ устойчивости гармонически линеаризованной нелинейной САУ проводится в 2 этапа [3]. На первом этапе принимают гипотезу, что в системе существуют автоколебания и определяют амплитуду и частоту этих колебаний , а затем, на втором этапе оценивается устойчивость найденного периодического решения и устойчивость нелинейной САУ. Для этих целей можно использовать либо критерий Михайлова, либо метод Гольдфарба.

Рассмотрим метод Гольдфарба. Основное уравнение метода гармонического баланса (линеаризации) [7] имеет вид

где – передаточная функция линейной части нелинейной САУ; а – комплексный коэффициент передачи гармонически линеаризованного нелинейного элемента.

На основании уравнений, можем записать

Решая уравнение относительно и , можно определить параметры автоколебаний. Гольдфарб Л.С. предложил решать его графическим способом, представив это уравнение как

где – обратная характеристика НЭ.

На комплексной плоскости строится годограф линейной части (рис. 2.33) и отрицательная характеристика НЭ . Точки пересечения этих характеристик и дают решения уравнения. По характеристике определяется амплитуда колебаний , а по годографу – частоту .

На рис. 2.35 показан случай наличия в системе 2-х периодических решений: точки пересечения графиков 2 (, ) и 5 (, ). Для положительных приращений амплитуды , годограф охватывает т.4 и не охватывает т.1, а для отрицательных – охватывает т.3 и не охватывает т.6.

Рис. 2.35. Графическое представление метода Гольдфарба

Если годограф не охватывает точку с положительным приращений амплитуды (см. т.1), и охватывает точку с , то найденное решение будет устойчивым (т.2) и система устойчива в большом. В противном случае (т.5) найденное решение является неустойчивым, а система устойчива в малом.

Пример 2.14. Используя метод Гольдфарба, оценить устойчивость САР частоты вращения ДПТ с нелинейной характеристикой ГПТ. Нелинейная характеристика ГПТ приведена на рис. 2.32.

Решение.

Воспользуемся передаточной функцией линейной части и коэффициентами гармонической линеаризации из примера 2.13

; .

Зададим параметры системы: =0,1с.; =0,7с.; Кэу =10; Кд =0,6; Кр =0,2; Кг1 =8; Кд1 =8,5; Ктг=0,15; Кос=0,5, , . Тогда

.

Переходим в частотный диапазон и, используя ППП Mathcad, строим годограф АФЧХ и - . Результаты приведены на рис. 2.34.

Рис. 2.36. Годограф АФЧХ и .

Вывод. Графики пересекаются, следовательно, есть общее решение уравнения, и согласно формулировки метода Гольдфарба найденное решение устойчивое и САР частоты вращения ДПТ устойчивая в большом.





Дата публикования: 2014-11-02; Прочитано: 926 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...