Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Глава 13. Определенный интеграл



§1 Вычисление определенного интеграла
1. Формула Ньютона-Лейбница Задача. Вычислить интеграл . Решение. . Ответ. 9.   Задача. Вычислить интеграл . Решение. Ответ. .
2. Замена переменной в определенном интеграле Задача. Вычислить интеграл . Решение. . Ответ. .

3. Формула интегрирования по частям Задача. Вычислить интеграл . Решение. . Ответ. .  
4. Интегрирование четных и нечетных функций в симметричных пределах  
Задача. Вычислить интеграл . Решение. . Ответ. 0.   Задача. Вычислить интеграл . Решение. . Ответ. .    
§2 Несобственные интегралы  
Несобственные интегралы I рода  
Если функция непрерывна на , то (*) Если функция непрерывна на , то (**) Если функция непрерывна на , то (***) Если пределы (*), (**) существуют и конечны, то несобственный интеграл – сходящийся, если эти пределы не существуют или бесконечны - расходящийся. Интеграл сходится – если сходится каждый из двух интегралов в равенстве (***). Задача. Вычислить несобственный интеграл или установить его расходимость: . Решение. , интеграл сходится.      
Несобственные интегралы II рода  
Если - непрерывна на и имеет бесконечный разрыв при , то . (*) Если функция терпит бесконечный разрыв в точке , то . (**) Если терпит бесконечный разрыв внутри отрезка , т.е. в точке , , то . (***) Если пределы (*), (**) существуют и конечны, то несобственный интеграл – сходящийся, если эти пределы не существуют или бесконечны - расходящийся. Интеграл сходится – если сходится каждый из двух интегралов в равенстве (***). Задача. Вычислить несобственный интеграл или установить его расходимость: Решение. , интеграл расходится.  
§3 Геометрические приложения определенного интеграла  
Площадь плоской фигуры в декартовой системе координат Площадь плоской фигуры в полярной системе координат  
,   - непрерывна на ,  
Задача. Площадь фигуры, ограниченной параболой и прямой , вычисляется с помощью интеграла… Варианты ответов: 1) 2) 3) 4) Решение. , следовательно, . На отрезке график функции расположен выше графика функции , поэтому Ответ. №3.  
Длина дуги плоской кривой в декартовой системе координат , Задача. Найти длину дуги кривой от до . Решение. Так как , то ; . . . Ответ. .  
    ,  
Длина дуги плоской кривой в полярной системе координат       ,    
Длина дуги плоской кривой в параметрическом виде на плоскости        
Длина дуги плоской кривой в параметрическом виде в пространстве          
    Объем Площадь поверхности
Объем и площадь поверхности тела вращения   Кривая , вращается вокруг оси   Кривая , вращается вокруг оси        
§4 Применение определенного интеграла к решению некоторых задач физики
Вычисление работы Вычисление работы переменной силы , при перемещении точки вдоль оси из положения в положение  
Вычисление пути Путь пройденный телом за промежуток времени от до со скоростью
                             



Дата публикования: 2014-11-02; Прочитано: 398 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...