Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Методы доказательства теорем



По способу связи аргументов от условия к заключению доказательства подразделяются на прямые и косвенные.

Прямое доказательство основано на каком-нибудь несомненном начале, из которого непосредственно устанавливается истинность теоремы.

Методы прямого доказательства:

– синтетический,

– аналитический,

– метод математической индукции.

Синтетический метод: при построении цепочки силлогизмов мысль движется от условия теоремы к ее заключению.

В учебниках приводятся преимущественно синтетические доказательства. Их преимущества – полнота, сжатость, краткость. Недостатки – отсутствие мотивации шагов, обоснования дополнительных построений; они носят значительно более формальный характер, чем аналитические доказательства.

Пример. Теорема о хордах окружности.

Теорема. Если две хорды окружности пересекаются, то произведения отрезков одной хорды равно произведению отрезков другой хорды.

 
 


Дано: АВ и СД – хорды окружности, Е – точка их пересечения.

Доказать: АЕ×ВЕ = СЕ×ДЕ. (1)

Доказательство (синтетическое)

Рассмотрим треугольники АДЕ и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу ВМД, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников DАДЕ ~ DСВЕ. Отсюда следует, что , или АЕ×ВЕ = СЕ×ДЕ. Теорема доказана .

Аналитический метод: при поиске доказательства мысль движется от заключения теоремы к ее условию. Преимущества этого метода – есть отправное звено доказательства, дополнительные построения мотивированы, увеличивается творческая активность учащихся. Недостатки – большие потери времени, искусственные дополнительные построения трудно обосновать.

Пример. Теорема о хордах окружности.

Доказательство (аналитическое)

Чтобы доказать равенство (1), достаточно показать, что (2).

Для того, чтобы найти пропорцию (2), достаточно доказать подобие треугольников, стороны которых являются членами этой пропорции. Для получения таких треугольников соединяем точки С и В, А и Д.

Чтобы обосновать верность пропорции (2), достаточно доказать, что DАДЕ ~ DСВЕ. Эти треугольники подобны по первому признаку подобия треугольников: Ð1 = Ð2 как вписанные углы, опирающиеся на одну и ту же дугу ВМД, а Ð3 = Ð4 как вертикальные. Следовательно, теорема верна .

Любое аналитическое доказательство обратимо в синтетическое и наоборот. Это широко используется в учебном процессе. Технологии могут быть таковы:

1) синтетическое доказательство предваряется аналитическими поисками его плана;

2) синтетическое доказательство заменяется аналитическим, в качестве домашнего задания – изучение синтетического доказательства по учебнику;

3) при использовании лекционного метода (преимущественно за пределами курса основной школы) часто используется чисто синтетический метод доказательства.

Метод математической индукции не имеет распространения в геометрии, так как основан на свойствах множества натуральных чисел, выходит за рамки основной школы, поэтому мы не будет подвергать его специальному изучению.

Косвенное доказательство: истинность теоремы устанавливается посредством опровержения некоторых суждений, содержащихся в теореме.

Наиболее распространенный и единственно применимый в курсе планиметрии метод косвенного доказательства – доказательство от противного.

Логико-математическая сущность метода от противного: вместо прямой (р Þ q) доказывается обратная противоположной теорема ().

Поэтому доказательство методом от противного строится по следующей схеме:

1) пусть неверно q, то есть истинно ;

2) докажем, что ложно р, то есть истинно ;

3) убедились, что из ;

4) следовательно, р Þ q (в силу равносильности импликаций р Þ q и ), что и требовалось доказать.

Курс геометрии основной школы широко применяет доказательства от противного, начиная буквально с первых уроков в седьмом классе. При этом необходимо использовать алгоритмический подход.

Алгоритм доказательства от противного.

1. Допускаем, что заключение теоремы ложно. Тогда будет верно противоречащее ему утверждение.

2. Вычленяем возможные случаи.

3. Убеждаемся, что в каждом случае приходим к следствию, которое противоречит:

– условию теоремы,

– ранее установленным математическим фактам.

4. Наличие противоречия заставляет отказаться от принятого заключения.

5. Признаем справедливость заключения доказываемой теоремы.

Мы охарактеризовали основные логические методы доказательства теорем: прямые и косвенные, которые в свою очередь могут быть аналитическими и синтетическими, доказательствами от противного.

Можно говорить об основных математических методах доказательства теорем. В геометрии к ним можно отнести следующие базовые методы:

1) метод геометрических преобразований: эффективен, соответствует современной концепции обучения геометрии в школе, но требует развитого абстрактного и пространственного мышления; методика его использования в школе недостаточно отработана;

2) метод равенства и подобия треугольников – соответствует классической концепции обучения геометрии в школе, известен со времен Евклида, поэтому методика его хорошо разработана; навыки его применения формируются постепенно, в процессе решения задач и доказательства теорем.

Кроме указанных базовых математических методов доказательства теорем планиметрии можно говорить о более частных методах: метод симметрии, метод поворота, векторный метод, алгебраический метод, метод подобия, координатный метод и др.

Методы доказательства, используемые в курсе геометрии основной школы, можно обобщить в виде схемы I.





Дата публикования: 2015-11-01; Прочитано: 11916 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...