Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Производная сложной и обратной функций и функции, заданной параметрически



Приведем без доказательства некоторые утверждения, связанные с производными.

Теорема 5. Пусть сложная функция определена в точке и некоторой ее окрестност и пусть выполнены условия:

1. функция дифференцируема в точке

2. функция дифференцируема в соответствующей точке

Тогда сложная функция дифференцирума в точке и имеет место равенство

Напомним следующие понятия:

а) Функция называется обратимой на множестве если

При этом функция сопоставляющая каждому элемент такой, что называется функцией, обратной к

Очевидно, имеют место тождества:

Заметим, что все строго монотонные на множестве функции обратимы на

б) Говорят, что функция задана параметрически уравнениями если функция обратима на отрезке В этом случае где функция, обратная к функции

Теорема 6. Пусть функция в некоторой окрестности точки имеет обратную функцию Пусть, кроме того, функция дифференцируема в точке и Тогда обратная функция дифференцируема в соответствующей точке и имеет место равенство

Теорема 7. Пусть функция задана параметрически уравнениями и пусть выполнены условия:

1) функции дифференцируемы в фиксированной точке

2) в рассматриваемой точке

Тогда функция дифференцируема в точке и имеет место равенство





Дата публикования: 2015-11-01; Прочитано: 820 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...