![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Одним из наиболее универсальных и эффективных методов решений систем линейных уравнений является метод Гаусса, состоящий в последовательном исключении неизвестных.
Пусть дана система уравнений
(25)
Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (треугольному или трапециевидному) виду. Для этого над строками расширенной матрицы системы
проводятся элементарные преобразования, приводящие эту матрицу к ступенчатому виду. Полученная матрица будет эквивалентной матрице
, значит и система уравнений, полученная с помощью новой матрицы будет равносильной данной системе уравнений.
Если в процессе приведения системы (25) к ступенчатому виду появятся нулевые уравнения, то есть равенства вида 0=0, их отбрасывают. Если же появится уравнение вида
, а
то это говорит о том, что данная система уравнений несовместна.
Второй этап (обратный ход) заключается в решении ступенчатой системы. Если в последнем уравнении новой системы содержится одно неизвестное, то исходная система имеет единственное решение. Из последнего уравнения находим
, из предпоследнего уравнения
, далее поднимаясь по системе вверх, найдем все остальные неизвестные
,
. Если в последнем уравнении преобразованной системы более чем одно неизвестное, то данная система имеет множество решений (система является неопределенной). Из последнего уравнения выражаем первое неизвестное
через остальные неизвестные
. Затем подставляем значение
в предпоследнее уравнение системы и выражаем
через
и так далее. Придавая свободным неизвестным
произвольные значения, получим бесчисленное множество решений системы. На практике удобно, чтобы коэффициент
был равен 1 (уравнения переставить местами, либо разделить обе части первого уравнения на
).
Пример 37. Решить систему уравнений методом Гаусса:

Решение. Составим расширенную матрицу
данной системы

Так как
,
, поменяем местами первую и вторую строки матрицы
местами:
~
.
Сначала элементы первой строки умножим на (-2) и прибавим к соответствующим элементам второй строки, а затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:
~
.
Элементы второй строки умножим на
и прибавим к элементам третьей строки:
~
.
Восстановим систему по последней матрице

Получили систему, состоящую из двух уравнений и содержащую три неизвестных, то есть с помощью элементарных преобразований данную систему уравнений привели к ступенчатому виду, в которой нет уравнений вида
, где
. Поэтому система уравнений имеет бесчисленное множество решений. Выразим
через
из второго уравнения:

Подставим полученное выражение
в первое уравнение:


Пусть
, где С – любое действительное число, тогда полученное решение будет называться общим решением

Пусть
, тогда получаем решение, которое будет называться частным решением системы: 
Пример 38. Решить систему уравнений методом Гаусса

Решение. Составим расширенную матрицу
данной системы уравнений

Элементы первой строки умножим на (-2) и прибавим к элементам второй строки, затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:
~
.
Элементы второй строки умножим на (-3) и прибавим к элементам третьей строки:
~
.
Элементы третьей строки умножим на
:
~
.
С помощью элементарных преобразований получили матрицу треугольного вида, значит, данная система уравнений имеет единственное решение.
С помощью полученной преобразованной расширенной матрицы запишем соответствующую систему уравнений

Зная значение
, из второго уравнения находим
:
или 
Используя значения
и
, из первого уравнения находим
:
или окончательно 
Дата публикования: 2015-10-09; Прочитано: 250 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
