![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Определение 1. Квадратная матрица
называется обратимой, если существует квадратная матрица
такая, что
(1)
Каждая матрица
, удовлетворяющая (1), называется матрицей, обратной к
, или обращением матрицы
.
Предложение1. У каждой обратимой матрицы
существует лишь одно обращение.
Обращение матрицы
, если оно существует, обозначается через
.
Предложение 2.
.
Предложении 3. Пусть квадратные матрицы
и
обратимы и имеют один порядок. Тогда их произведение
также обратимо и при этом

Предложение 4. Если матрица
обратима, то транспонированная матрица
также обратима, и при этом

Дата публикования: 2015-09-18; Прочитано: 1251 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
