![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Нам нужно следующее обозначение суммы конечного числа слагаемых
(1)
В этом обозначении
называют общим членом суммы,
-индексом суммирования,
и
- нижним и верхним пределами суммирования.
Некоторые свойства суммирования
1) Индекс суммирования в (1) можно заменить другим:

2) Множитель, не зависящий от индекса суммирования, можно выносить за знак суммы:
.
3) При двойном суммировании можно изменять порядок суммирования:
(2)
3) Определение матрицы. Примеры. Равенство двух матриц.
Определение 1. Матрицей размерности
называется прямоугольная таблица из
чисел, расположенных в
строках и
столбцах.
Обозначаются матрицы, как правило, большими буквами
или подробно
или 
Например, матрицы
,
,
и 
имеют, соответственно, размерности
. Числа
, образующие матрицу, называются элементами матрицы. При этом первый индекс
обозначает номер строки, а второй
- номер столбца, в которых расположен элемент
. Так,
- элемент первой строки и третьего столбца матрицы
.
Рассмотрим некоторые примеры матриц.
1) Квадратная матрица. Матрица размерности
называется квадратной матрицей порядка
. Общий вид квадратной матрицы
или
.
Например,
и
есть квадратные матрицы второго и третьего порядков соответственно.
Элементы
(или
) квадратной матрицы
называются диагональными элементами (или говорят, что они лежат на главной диагонали матрицы).
2) Матрица - строка. Это матрица размера
:
.
3) Матрица - столбец. Это матрица размера
:
.
Замечание 1. Матрицу – строку часто называют просто строкой, а матрицу-столбец – просто столбцом. При этом для простоты записи элементы этих матриц снабжают только одним индексом. Иногда в обозначениях используют черту: снизу – для строки, сверху для столбца. Например,
,
.
4) Треугольная матрица. Это квадратная матрица, у которой элементы, расположенные под диагональю (или над диагональю), равны нулю. Например,
,
,
.
5) Нулевая матрица. Это матрица, все элементы которой равны нулю. Нулевая матрица обозначается символом
. Если желают явно указать размерность матрицы, то пишут
.

6) Единичная матрица. Квадратная матрица, все диагональные элементы которой равны 1, а остальные – нулю, называется единичной и обозначается
или
, где
- ее порядок. Таким образом,

Определение 2. Две матрицы называются равными, если у них:
1) одинаковое число строк и столбцов, т.е. совпадают размерности матриц;
2) элементы, стоящие на соответственных местах этих матриц, равны.
Дата публикования: 2015-09-18; Прочитано: 304 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
