Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Классификация органических реакций и их компонентов



Реакции с участием органических соединений подчиняются тем же законам, что и реакции в неорганической химии, хотя и имеют некоторые специфические особенности. В неорганиче­ской химии в реакциях обычно участвуют ионы, поэтому они протекают очень быстро, а иногда - мгновенно. В реакциях ор­ганической химии обычно участвуют молекулы, при этом раз­рываются одни ковалентные связи и образуются новые. Эти ре­акции протекают значительно медленнее, чем ионные, и для их успешного осуществления часто необходимы жесткие условия: повышенная температура, повышенное давление и катализаторы. В отличие от неорганических, органические реакции редко при­водят к высокому выходу продукта (более 80 %), так как обычно протекает не одна, а несколько реакций. Поэтому в органической химии используются не химические уравнения, а схемы реакций, в которых обычно не приводятся стехиометрические соотношения между участниками, но указываются условия проведения реак­ции. Например, реакция этилена с водой, протекающая при по­вышенной температуре, повышенном давлении и в присутствии кислотного катализатора, записывается так:

В ходе большинства биохимических реакций изменению подвергается не вся молекула органического соединения, как это обычно бывает с неорганическими веществами, а только ее часть, которая называется реакционным центром. Реакционные центры в зависимости от природы и структуры имеют разную степень сродства к атакующим частицам, и их можно подразде­лять в зависимости от типа органической реакции.

Реакции в органической химии принято классифицировать по механизму их протекания и по конечному результату химиче­ского превращения. По механизму протекания реакции делятся на гетеролитические (электрофильно-нуклеофильные) и гемо­литические (свободнорадикалъные). Поскольку названия «элек­трофильно-нуклеофильные» или «свободнорадикалъные» указыва­ют на характер реагирующих частиц, то они используются в учеб­нике для харатеристики механизма реакции.

Электрофильно-нуклеофильные реакции сопровождаются гетеролизом полярной ковалентной связи между фрагментами причем так, что ее общая электронная пара сильно смесмещается к одному фрагменту молекулы , превращая его в нуклеофил, а у другого фрагмента возникает дефицит электро­нов , превращая его в электрофил:

где А и В обозначают атомы или группы атомов, связанные по­лярной ковалентной связью. При полном гетеролизе связь раз­рывается с образованием катиона А+ — сильного электрофила — и аниона В- - сильного нуклеофила. Процесс гетеролиза кова­лентной связи можно рассматривать как расщепление этой связи по донорно-акцепторному механизму.

Гетеролиз ковалентной связи происходит и в молекуле суб­страта, и в молекуле реагента. Результатом электрофильной реакции является взаимодействие между фрагментами реагента и субстрата, проявляющими противоположные свойства.

Электрофилами называются частицы или фрагменты молекул, содержащие свободную, доступную орбиталь и имеющие недостаток электронной плотности, которые в результате реакции образуют связь с новым нуклео-филом, акцептируя у него оба электрона на свою ва­кантную орбиталь.

 
 

Электрофилами являются положительно заряженные частицы или фрагменты молекул, проявляющие высокое сродство к электрон­ной паре нуклеофила:

В электрофильно-нуклеофильных реакциях электрофил вы­ступает акцептором электронной пары нуклеофила. К электро­филам также относятся все кислоты (доноры протона) при ки­слотно-основном взаимодействии, все окислители (акцепторы электронов) при окислительно-восстановительном взаимодейст­вии и все комплексоообразователи (акцепторы электронов) в реакциях комплексообразования.

Нуклеофилами называются частицы или фрагменты молекул, содержащие подвижную электронную пару, ко­торые в результате реакции образуют связь с новым электрофилом, отдавая ему эту электронную пару.

 
 

Нуклеофилами являются отрицательно заряженные частицы или фрагменты молекул, проявляющие высокое сродство к электро­филу:

 
 

В электрофильно-нуклеофильных реакциях нуклеофил вы­ступает донором электронной пары. К нуклеофилам также от­носятся все основания при кислотно-основном взаимодейст­вии, все восстановители при окислительно-восстановительном взаимодействии и все лиганды в реакциях комплексообразо­вания.

Таким образом, используемые в органической химии поня­тия электрофил и нуклеофил имеют более широкий смысл, чем понятия кислота и основание, окислитель и восстановитель, ком-плексообразователь и лиганд, используемые в неорганической химии. Однако суть электрофильно-нуклеофильных реакций, подоб­но кислотно-основным, окислительно-восстановительным и реак­циям комплексообразования, также заключается в донорно-акцепторном взаимодействии компонентов с противоположными свойствами.

Электрофильно-нуклеофильные свойства органических соеди­нений проявляются прежде всего в их способности вступать в ре­акции: кислотно-основные, окислительно-восстановительные и комплексообразования. Органические соединения вступают также и в другие электрофильно-нуклеофильные реакции, которые нель­зя отнести к вышеуказанным. В основном именно для этих реак­ций в данном учебнике будет использоваться термин «электро-фильно-нуклеофильная реакция».

Электрофилы и нуклеофилы характеризуются различной поляризуемостью и качественно подразделяются (разд. 2.1.3) на жесткие (низкая поляризуемость) и мягкие (высокая поляри­зуемость).

Жесткие электрофилы имеют сравнительно большой положительный заряд, а их свободная орбиталь, на которую перейдет электронная пара нуклеофила, имеет низкий уровень энергии. Жесткими электрофилами являются:

Жесткие нуклеофилы хорошо удерживают свою элек­тронную пару, поскольку ее орбиталь расположена близко к яд­рам атомов и имеет низкий уровень энергии. Донорными атома­ми в жестких нуклеофилах могут быть кислород, азот, хлор, фтор. Жесткими нуклеофилами являются:

Жесткие нуклеофилы трудно окисляются.

Мягкие электрофилы содержат акцепторные атомы большого размера с невысокой электроотрицательностью и с ма­лым положительным зарядом. Их свободная орбиталь, принимающая электронную пару нуклеофила, имеет высокий уровень энергии. Мягкими электрофилами являются:

Мягкие нуклеофилы плохо удерживают свою элек­тронную пару, поскольку ее орбиталь удалена от ядер атомов и имеет высокий уровень энергии. Донорными атомами в мягких нуклеофилах выступают атомы серы, иода и углерода.

Мягкими нуклеофилами являются:

Мягкие нуклеофилы довольно легко окисляются. Существуют электрофилы и нуклеофилы, которые занимают промежуточное положение.

В соответствии с принципом Пирсона более стабильная связь образуется при взаимодействии жесткого электрофила с жест­ким нуклеофилом или мягкого электрофила с мягким нуклеофилом. На основе этого принципа можно качественно оценить реакционную способность при взаимодействии нуклеофилов и электрофилов различного типа.

В органической химии электрофильно-нуклеофильные реак­ции принято называть по характеру частицы, которой реагент атакует субстрат. Этот выбор можно объяснить тем, что реагент обычно является более простой молекулой, в которой проще оп­ределить состав электрофильного и нуклеофильного фрагмента и их активность, а следовательно, и характер атакующей частицы.

Нуклеофильной называется реакция, при которой реа­гент атакует субстрат своим нуклеофилом; она обозначается индексом N (nucleophile).

В нуклеофильных реакциях реагент принято называть нук­леофилом.

В органической химии нуклеофильность реагента характери­зует его способность взаимодействовать с атомом углерода суб­страта, несущим полный или частичный положительный заряд.

 
 

Электрофильной называется реакция, при которой реагент атакует субстрат своим электрофилом; она обозначается индексом Е (electrophile).

В электрофильных реакциях реагент принято называть электрофилом. В органической химии электрофильность реагента ха­рактеризует его способность взаимодействовать с атомом углерода субстрата, несущим полный или частичный отрицательный заряд.

В действительности механизм и результат любой электрофильно-нуклеофильной реакции определяется не только свойст­вами реагента, но и свойствами субстрата, образующихся продуктов реакции, растворителя и условиями ее проведения. По­этому разделение электрофильно-нуклеофильных реакций на нуклеофильные и электрофильные только по свойствам реагента носит условный характер. Кроме того, как видно из приведенных схем, в этих реакциях всегда взаимодействуют между собой элек­трофилы и нуклеофилы, содержащиеся в субстрате и реагенте. Во многих реакциях лишь условно один компонент может счи­таться субстратом, а другой - реагентом.

Свободнорадикальные реакции. Гомолитический распад ха­рактерен для неполярной или малополярной связи. Он сопро­вождается образованием свободных радикалов - частиц с неспаренным электроном (разд. 5.2.1).

Гомолиз ковалентной связи можно рассматривать как расще­пление этой связи по обменному механизму. Для осуществления гомолиза связи необходима энергия (теплота, свет), достаточная для того, чтобы разорвать эту связь. Наличие неспаренного элек­трона является причиной малой стабильности свободных радика­лов (время жизни в большинстве случаев составляет доли секунды) и высокой реакционной способности в свободнорадикальных реакциях. Присутствие в системе свободного радикала может приводить к образованию новых радикалов вследствие его взаимодействия с имеющимися молекулами:

Свободнорадикальные реакции сопровождаются взаи­модействием свободных радикалов с молекулами или между собой с образованием новых свободных радикалов (зарождение или развитие цепи) или только молекул (обрыв цепи).

Для свободнорадикальных реакций характерен цепной ме­ханизм, который включает три стадии: зарождение, развитие и обрыв цепи (разд. 5.4). Эти реакции прекращаются при исчез­новении в системе свободных радикалов. Свободнорадикальные реакции обозначаются индексом R (radical).

Радикальные частицы в зависимости от их сродства к электрону могут и принимать электроны (т. е. быть окислителями), и отдавать электроны (т. е. быть восстановителями). При этом сродство радикала к электрону определяется не только его свойствами, но и свойствами его партнера по реакции. Особенности процессов свободнорадикального окисления-восстановления, протекающих в организме, были рассмотре­ны в разд. 9.3.9.

В реакциях комплексообразования радикалами могут быть и комплексообразователь, и лиганды. В случае комплексов с переносом заряда радикалообразование может происходить внутри комплекса за счет внутримолекулярного окисления-восстановления между комплексообразователем и лигандом (разд. 17.4).

Образование радикалов легче всего происходит при гомолизе неполярных простых связей между атомами одного и того же элемента:

При гомолизе малополярной связи С—Н образуются алкильные радикалы, в которых неспаренный электрон находится у атома углерода. Относительная устойчивость этих радикалов зависит от типа замещения атома углерода, несущего неспарен­ный электрон, и растет в ряду: *СН3 < *-CI2R < *СHR2 < *CR3. Это объясняется положительным индуктивным эффектом алкильных групп, который, повышая электронную плотность на атоме углерода, способствует стабилизации радикала.

Стабильность свободных радикалов существенно возрастает, когда имеется возможность делокализации неспаренного элек­трона за счет π-электронов соседних кратных связей. Это особен­но наглядно наблюдается в аллильном и бензильном радикалах:

В ходе ознакомления с возможными механизмами реакций в молекулах субстрата и реагента следует различать реакцион­ные центры по их характеру: нуклеофильные, электрофильные и радикальные.

По конечному результату химического превращения простей­шие органические реакции классифицируются на реакции: замещения, присоединения, элиминирования (отщепления) и пе­регруппировки.

Реакции замещения. Под замещением понимают замену ато­ма или группы на другой атом или группу. В реакции замещения всегда образуются два различных продукта. Этот тип реакций обозначается символом S (substitution).

К реакциям замещения относятся: галогенирование и нит­рование алканов (разд. 16.1), этерификация и алкилирование карбоновых кислот (разд. 19.2.3), а также многочисленные ре­акции взаимодействия простых полярных молекул (Н20, NH3, НГал) с эфирами, спиртами и галогенпроизводными (разд. 17.3, 17.5, 19.2.3).

Реакции присоединения. Под присоединением понимают вве­дение атомов или групп в молекулу непредельного соединения, сопровождаемое разрывом π-связей. При этом двойные связи превращаются в ординарные, а тройные связи - в двойные или ординарные (разд. 16.2). Этот тип реакций обозначается симво­лом A (addition).

Реакции элиминирования (отщепления). Под элиминиро­ванием понимают отщепление атомов или групп от органиче­ской молекулы с образованием кратной связи. Поэтому реакции элиминирования обратны реакциям присоединения. Этот тип ре­акции обозначается символом Е (elimination).

Каждая из органических реакций замещения (S), присоеди­нения (А) или элиминирования (Е) может быть электрофильной (Е), нуклеофильной (N) или радикальной (R). Таким образом, в органической химии выделяют девять типовых реакций, обо­значаемых символами S, А или Е с индексами R, N или Е:

 
 

Приведенные типы органических реакций следует считать модельными, так как они не всегда реализуются в чистом виде. Так, например, замещение и элиминирование могут протекать одновременно:

Перегруппировки. В процессе перегруппировки происходит перемещение (миграция) одних атомов или групп ют одного фраг­мента молекулы к другому без изменения ее брутто-формулы. Перегруппировки органических соединений происходят обычно в присутствии катализатора и сопровождаются окислительно-вос­становительной дисмутацией атомов углерода:

При дальнейшем знакомстве с конкретными классами орга­нических соединений нами будут рассматриваться следующие их химические свойства: кислотно-основные, комплексообразующие, окислительно-восстановительные, электрофильно-нуклеофильные, а также способность к свободнорадикальному взаимо­действию. Особое внимание будет уделено особенностям проте­кания рассматриваемых реакций в биологических системах


 
 

Глава 16





Дата публикования: 2014-10-16; Прочитано: 3665 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...