![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Если z = f (x;y) непрерывна в области D
R² и f (x;y) ≥ 0, то двойной интеграл от этой функции по области D равен объему цилиндроида, у которого нижнее основание – область
, верхнее – часть поверхности z = f (x;y) и боковая поверхность цилиндроида параллельна 0Z, т.е. 
2. Масса пластинки, занимающей область D плоскости 0XY и имеющей плотность
: 
При этом статистические моменты пластинки, относительно осей 0X и 0Y:
;
.
Дата публикования: 2015-03-26; Прочитано: 262 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
