Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства степенных рядов



Пусть функция является суммой степенного ряда

,

интервал сходимости которого .

В этом случае говорят, что на интервале функция разлагается в степенной ряд (или в ряд по степеням х).

Имеют место две теоремы о свойствах степенных рядов.

Если функция на интервале разлагается в степенной ряд, то она дифференцируема на этом интервале и ее производная может быть найдена почленным дифференцированием ряда, т.е.:

.

Аналогично могут быть вычислены производные любого порядка функции . При этом соответствующие ряды имеют тот же интервал сходимости, что и степенной ряд.

Если функция на интервале разлагается в степенной ряд, то она интегрируема в интервале и интеграл от нее может быть вычислен почленным интегрированием степенного ряда, т. е., если , то:

+

+ + … + +....

Теорема. Если функция на интервале разлагается в степенной ряд:

,

тоэто разложение единственно.

Пусть функция бесконечное число раз дифференцируема в точке , тогда в окрестности этой точки функция раскладывается в степенной ряд:

,

называемый рядом Тейлора.

При функция разлагается в степенной ряд:

,

называемый рядом Маклорена.

Для того чтобы ряд Маклорена сходился на и имел своей суммой функцию , необходимо и достаточно, чтобы на остаточный член формулы Маклорена стремился к нулю при , т.е. для любого .

Рассмотрим разложения в ряд Маклорена некоторых элементарных функций:

;

;

;





Дата публикования: 2015-03-26; Прочитано: 159 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...