![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Множества – совокупность некоторых объектов, объединенных по какому-то признаку.
Объекты из которых состоит множество, называются элементами. Множества принято обозначать заглавными латинскими буквами А,B,C…,а их элементы - малыми буквами.
Множество, не содержащее ни одного элемента, называется пустым множеством.
Элементы множества записывают в фигурных скобках, внутри которых они перечислены.
Множество А называется подмножеством В, если каждый элемент множества А является элементом множества В.
Множества А и В равны или совпадают, если они состоят из одних и тех же элемнтов.
Объединение – множество, состоящее из элементов, каждый из которых принадлежит хотя бы одному из этих множеств.
Пересечение – множество, состоящее из элементов, каждый из которых принадлежит множеству А и множеству В.
Множества, элементами которых являются числа, называются числовыми.
Множество К содержит рациональные и иррациональные числа. Всякое рациональное число выражается или конечной десятичной дробью или бесконечной периодической дробью.
23. Комплексные числа. Формулы Муавра.
Комплексным числом назыв. выражение вида z = x + iy, где x и y - действительные числа, а i – так назыв. мнимая единица, . Если x=0, то число 0+iy=iy назыв. числом мнимым; если y=0, то число x+i0=x отождествляется с действительным числом х, а это означает, что множество R всех действит. чисел явл. подмножеством множества С всех комплексных чисел, т.е.
. Число х назыв. действительной частью z,
. Два комплексных числа
и
называются равными (z1=z2) тогда и только тогда, когда равны их действительные части и равны их мнимые части: x1=x2, y1=y2. В частности, комплексное число Z=x+iy равно нулю тогда и только тогда, когда x=y=0. Понятия «больше» и «меньше» для комплексных чисел не вводятся. Два комплексных числа z=x+iy и
, отличающиеся лишь знаком мнимой части, называются сопряженными.
Геометрическое изображение комплексных чисел.
Всякое комплексное число z = x + iy можно изобразить точкой M(x,y) плоскости Oxy такой, что x=Re z, y=Im z. И, наоборот, каждую точку M(x;y) координатной плоскости можно рассматривать как образ комплексного числа z = x + iy. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью, т.к. на ней лежат действительные числа z = x + 0i = x. Ось ординат называется мнимой осью, так как на ней лежат чисто мнимые комплексные числа z = 0 + iy. Комплексное число Z=x+iy можно задать с помощью радиус-вектора r=OM=(x,y). Длина вектора r, изображающего комплексное число z, называется модулем этого числа и обозначается |z| или r. Величина угла между положит. Направлением действительной оси и вектором r, изображающим комплексное число, называется аргументом этого комплексного числа, обозначается Arg z или . Аргумент комплексного числа Z=0 не определен. Аргумент комплексного числа
- величина многозначная и определяется с точностью до слагаемого
где arg z - главное значение аргумента, заключенное в промежутке (
), т.е. -
(иногда в кач-ве главного значения аргумента берут величину, принадлежащую промежутку (0;
)).
Запись числа z в виде z=x+iy называют алгебраической формой комплексного числа.
Действия над комплексными числами
Сложение. Суммой двух комплексных чисел z1=x1+iy1 и z2=x2+iy2 называется комплексное число, определяемое равенством: z1+z2=(x1+x2) + i(y1+y2). Сложение комплексных чисел обладает переместительным и сочетательным свойствами: z1+z2=z2+z1. (z1+z2)+z3=z1+(z2+z3). Вычитание. Вычитание определяется как действие, обратное сложению. Разностью комплексных чисел z1 и z2 называется такое комплексное число z, которое, будучи сложенным с z2, дает число z1, т.е. z=z1-z2, если z+z2=z1. Если z1=x1+iy1, z2=x2+iy2, то из этого определения легко получить z: z=z1-z2=(x1-x2) + i(y1-y2). Умножение. Произведением комплексных чисел z1=x1+iy1 и z2=x2+iy2 называется комплексное число, определяемое равенством z=z1z2= (x1x2-y1y2) + i(x1y2+y1x2). Отсюда, в частности, и следует: . Если числа заданы в тригонометрической форме:
.
При умножении комплексных чисел их модули перемножаются, а аргументы складываются. Формула Муавра (если есть n множителей и все они одинаковые): .
24.
Лине́йное отображе́ние, лине́йный опера́тор — обобщение линейной числовой функции (точнее, функции ) на случай более общего множества аргументов и значений.
Другими словами, функция — это правило, по которому каждому элементу одного множества (называемого областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).
Все значения, которые принимает x, образуют область определения функции; все значения, которые принимает y, образуют множество значений функции.
Графиком функции называется множество всех точек на координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции. Если некоторому значению x=x0 соответствуют несколько значений (а не одно) y, то такое соответствие не является функцией.
Дата публикования: 2015-03-26; Прочитано: 471 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!