Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Численная модель характеризуется зависимостью такого вида, который допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. 2 страница



Алгоритм однозначно определяет, какие ресурсы системы, в какой последовательности и какие операции должны выполнить для достижения некоторого целевого назначения системы. В системах с программным принципом управления, обеспечивающих параллельное выполнение нескольких технологических процессов, имеются алгоритмы управления совокупностью процессов. Их основное назначение заключается в разрешении конфликтных ситуаций, возникающих, когда два или более процесса претендуют на один и тот же ресурс. Совокупность алгоритмов управления А0 совместно с параметрами входных воздействий Х0 и элементов S0 отражают динамику функционирования системы.

Обычно алгоритмы преобразовываются к виду Am, удобному для моделирования. Основные приемы преобразования алгоритмов изложены в гл. 4. Данный подход к описанию динамики работы системы особенно удобен для имитационного моделирования и является естественным способом определения множества характеристик системы:

(1)

где Ф — множество операторов вычисления выходных характеристик (здесь и в дальнейшем индексы о, т,k множеств, указывающие на интересующие (k ) элементы оригинала (о) и модели (т), опущены в целях упрощения записи).

Отражение состояний. В ряде случаев, в частности для систем со структурным принципом управления, получил распространение другой подход. Для каждого элемента выбирается определенный параметр s (иногда несколько параметров), значение которого изменяется в ходе функционирования элемента и отражает его состояние в текущий момент времени z (t). Множество таких параметров по всем п = элементам системы {zn} отражает состояние системы Z (t). Функционирование системы представляется в виде последовательной смены состояний: Z .(t0),Z(t1).... Z (Т). Множество {Z} возможных состояний системы называют пространством состояний. Текущее состояние системы в момент времени t () отражается в виде координаты точки в га-мерном пространстве состояний, а вся реализация процесса функционирования системы за время Т — в виде некоторой траектории.

Если известно начальное состояние системы Z ° = Z (t0), то можно определить ее состояние в любой момент t, принадлежащий интервалу Т, когда известна зависимость

(2)

Тогда выходные характеристики определятся по формуле

V =G(Z, Т}. (3)

Созданная концептуальная модель должна быть проверена на адекватность исследуемому объекту. Поскольку на данном этапе возможен только умозрительный анализ и эксперимент, желательно, чтобы такую проверку выполняли эксперты, а не разработчик модели.

2. Подготовка исходных данных

Сбор фактических данных. При создании концептуальной модели выявляются качественные (функциональные) и количественные параметры объекта и внешних воздействий X. Для количественных параметров необходимо определить их конкретные значения, которые будут использованы в виде исходных данных при моделировании. Это трудоемкий и ответственный этап работы. Он существенно влияет на успех моделирования. Очевидно, что достоверность результатов моделирования однозначно зависит от точности и полноты исходных данных.

На ранней стадии создания концептуальной модели зачастую выявляется часть параметров, которые определенно войдут в модель. По этим параметрам сбор исходных данных можно вести параллельно с разработкой концептуальной модели. По мере уточнения концептуальной модели определяются остальные параметры. Сбор исходных данных осложняется по следующим причинам. Во-первых, значения параметров могут быть не только детерминированными, но и стохастическими. Во-вторых, не все параметры оказываются стационарными. Особенно это относится к параметрам внешних воздействий. В-третьих, всегда идет речь о моделировании несуществующей (проектируемой, модернизируемой) системы или системы, которая должна функционировать в новых условиях.

Большая часть параметров — это случайные величины по своей природе. Однако в целях упрощения модели часто многие из них представляются детерминированными средними значениями. Это можно делать, если случайная величина имеет небольшой разброс, или в случае, когда для достижения цели моделирования достаточно вести расчет по средним значениям. Например, производительность процессора может быть задана определенным количеством операций, выполняемых в единицу времени. Но это количество детерминировано только для определенной смеси операций, которые может выполнять процессор. Подмена в расчетах случайных значений параметров детерминированными величинами должна производиться обдуманно, так как она может привести к погрешностям моделирования. Под воздействием случайных факторов результаты функционирования системы не только подвергаются рассеиванию, но могут также получить смещение своих средних значений.

При создании модели может иметь место и обратное явление — детерминированные параметры представляются случайной величиной. Делается это при интеграции элементов системы или внешних воздействий с целью сокращения размерности модели. Например, при выполнении программы ВС обрабатывается вполне определенное количество данных. При следующем выполнении этой программы может обрабатываться другое, но тоже определенное количество данных. Для моделирования многократного выполнения программы можно задать всю совокупность количеств данных или подменить это множество значений случайной величиной с определенным законом распределения.

Подбор закона распределения. Для случайных параметров организуется сбор статистики и последующая ее обработка. В процессе обработки выявляется возможность представления параметра некоторым теоретическим законом распределения. Это необходимо в связи с тем, что при определенных законах распределения основных параметров системы и нагрузки появляется возможность создания аналитической модели, а при имитационном моделировании может оказаться проще задать вид закона распределения и основные статистические характеристики, чем представлять случайную величину, например, в виде таблицы.

Процедура подбора вида закона распределения заключается в следующем. По совокупности численных значений параметра строится гистограмма относительных частот — эмпирическая плотность распределения. Гистограмма аппроксимируется плавной кривой. Полученная кривая последовательно сравнивается с кривыми плотности распределения различных теоретических законов распределения. Выбирается один из законов по наилучшему совпадению вида сравниваемых кривых. По эмпирическим значениям вычисляют параметры этого распределения. Затем выполняют количественную оценку степени совпадения эмпирического и теоретического распределения по тому или другому критерию согласия, например, Пирсона (хи-квадрат), Колмогорова, Смирнова, Фишера или Стьюдента. Вопросы подбора вида закона распределения детально разработаны в математической статистике.

Особую сложность представляет сбор данных по случайным параметрам, которые являются функциями времени. В первую очередь такие параметры характерны для внешних воздействий. Пренебрежение фактами нестационарности параметров, которое зачастую имеет место в практике моделирования, приводит к существенным нарушениям адекватности модели.

Аппроксимация функций. Для каждого элемента системы существует функциональная связь между параметрами входных воздействий на этот элемент и его выходными характеристиками. Вид функциональной зависимости для одних элементов бывает очевиден, для других может быть легко выявлен исходя из природы функционирования. Однако для некоторых элементов может быть получена только совокупность экспериментальных данных о количественных значениях выходных характеристик при различных значениях параметров. В этом случае возникает необходимость ввести некоторую гипотезу о характере функциональной зависимости, т. е. аппроксимировать ее определенным математическим уравнением. Поиск математических зависимостей между двумя или более переменными по собранным опытным данным- может выполняться с помощью методов регрессионного, корреляционного или дисперсионного анализа.

Предварительно для описания определенного элемента вид уравнения задает исследователь. При двух переменных это делается достаточно просто по результатам сравнения графика, на который нанесены экспериментальные точки, с графиками наиболее распространенных аппроксимирующих функций, таких как прямая, парабола, гипербола, экспонента и т. д. Затем методами регрессионного анализа вычисляются константы выбранного уравнения таким образом, чтобы обеспечить наилучшее приближение кривой к экспериментальным данным независимо от того, насколько хорошо выбран вид кривой. Зачастую приближение оценивается по критерию наименьших квадратов.

Для выяснения того, насколько точно выбранная зависимость согласуется с опытными данными, используется корреляционный анализ. Коэффициент корреляции лежит в пределах от 0 до ±1, что соответствует изменению степени согласования от полного отсутствия корреляции до случая, когда все экспериментальные точки лежат точно на кривой.

Выдвижение гипотез. По части параметров, которые отражают новые элементы будущей системы или новые условия функционирования, отсутствует возможность сбора фактических данных. Для таких параметров выдвигаются гипотезы об их возможных значениях. Важно, чтобы гипотезы выдвигали эксперты-специалисты, которые достаточно хорошо представляют создаваемую систему или новые внешние воздействия на систему. Больший успех может быть достигнут, если представляется возможность получить сведения от группы специалистов. В этом случае можно уменьшить степень субъективности и воспользоваться хорошо отработанными методиками экспертных оценок. При проведении данной работы определенные сведения можно получить в результате анализа функционирования аналогичных, систем или прототипов будущей системы.

Заканчивается этап сбора и обработки исходных данных классификацией на внешние и внутренние, постоянные и переменные, непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. Для переменных количественных параметров, которыми может варьировать исследователь в ходе моделирования, определяются границы их изменений, а для дискретных — возможные значения.

3. Разработка математической модели

Обобщенные модели. Концептуальная модель и количественные исходные данные служат основой для разработки математической модели. Создание математической модели преследует две основные цели: 1) дать формализованное описание структуры и процесса функционирования системы для однозначности их понимания; 2) попытаться представить процесс функционирования в виде, допускающем аналитическое исследование системы.

Разработка единой методики создания математических моделей, очевидно, не представляется возможной. Это обусловлено большим разнообразием классов систем. Системы могут быть статические и динамические, со структурным или программным управлением, с постоянной или переменной структурой, с постоянным (жестким) или сменным (гибким) программным управлением. По характеру входных воздействий и внутренних состояний системы подразделяются на непрерывные и дискретные, линейные и нелинейные, стационарные и нестационарные, детерминированные и стохастические. При исследовании ВС может быть получено такое же разнообразие моделей в зависимости от ориентации, а также от степени стратификации и детализации.

Для определенных классов систем разработаны формализованные схемы и математические методы, которые позволяют описать функционирование системы, а в некоторых случаях—выполнять аналитические исследования.

Средствами формализованного описания процессов функционирования систем с программным принципом управления служат определенные языки и системы имитационного моделирования. Некоторые из них описаны в книге.

Агрегативные системы. Одной из наиболее общих формализованных схем является описание в виде агрегативных систем. Этот метод позволяет представить функционирование непрерывных и дискретных, детерминированных и стохастических систем. Он в наибольшей мере приспособлен для описания систем, у которых характерно представление входных и выходных воздействий в виде «сообщений», составленных из совокупностей «сигналов».

В основе метода лежит понятие агрегата как элемента системы. Математическая модель агрегата выражается в виде зависимостей с конкретизацией входных воздействий, состояний и операторов переходов и выходов. В частности, выделяют особые состояния агрегата, к которым относятся состояния в моменты получения входного или управляющего сигнала либо выдачи выходного сигнала. Из особого состояния агрегат скачкообразно может переходить в новое состояние. Агрегативная система образуется при расчленении системы на элементы, каждый из которых представляет собой агрегат.

Единообразное математическое описание исследуемых объектов в виде агрегативных систем позволяет использовать универсальные средства имитационного моделирования.

Кусочно-линейные агрегаты. Дальнейшая конкретизация структуры пространств состояний, входных и выходных воздействий, а также операторов переходов и выходов приводит к понятию кусочно-линейных агрегатов, удобных для формализации широкой совокупности разнообразных процессов и явлений материального мира. В основе подхода лежит кусочно-линейный закон изменения состояния системы, что обеспечивает простоту вычисления опорных моментов времени и, как следствие, простоту реализации модели кусочно-линейного агрегата и системы, составленной из таких агрегатов. В частных случаях для кусочно-линейных агрегативных систем результаты могут быть получены аналитическим методом.

Совместно с формализованным описанием системы в виде совокупности кусочно-линейных агрегатов может применяться метод управляющих последовательностей. Суть метода заключается в том, что функционирование системы определяется управляющими последовательностями, которые имеют определенный физический смысл, а также алгоритмами, описывающими управление системой с помощью введенных последовательностей. Управляющие последовательности и алгоритмы позволяют составлять рекуррентные соотношения для описания функционирования кусочно-линейного агрегата.

Стохастические сети. Для описания стохастических систем с дискретными множествами состояний, входных и выходных воздействий, функционирующих в непрерывном времени, широко используются стохастические сети. Стохастическая сеть представляет собой совокупность систем массового обслуживания, в которой циркулируют заявки, переходящие из одной системы в другую.

Большая группа языков имитационного моделирования основана на формализованном представлении систем в виде стохастических сетей. При определенных условиях стохастическая сеть может рассматриваться как совокупность независимых систем массового обслуживания. Это открывает возможность применения достижений теории массового обслуживания для проведения аналитического моделирования.

Системы массового обслуживания. В основе системы массового обслуживания лежит понятие прибора, который может выполнять конечное множество операций. Прибор выполняет операцию, когда возникает заявка — требование на выполнение операции. Если прибор выполняет любую операцию, то считается, что он занят (работает), в противном случае прибор свободен. Ограничение числа состояний прибора приводит к большей степени абстрактности, чем понятие агрегата.

Временная последовательность заявок называется потоком заявок. Общий поток заявок может состоять из нескольких потоков. В случаях независимости потоков, случайных моментов поступления или завершения обслуживания заявок в системе могут возникать очереди. Очередь — это заявки, ожидающие обслуживания, когда прибор занят. Прибор может состоять из нескольких элементов (каналов), каждый из которых способен обслужить любую заявку. Совокупность прибора, потоков заявок и очередей к нему называют системой массового обслуживания (СМО).

Теория массового обслуживания хорошо разработана. Поэтому она нашла широкое применение для создания математических моделей, в частности, при моделировании ВС. Применение теории марковских процессов и теории диффузионных процессов для исследования СМО при определенных ограничениях и допущениях позволило получить ряд важных аналитических зависимостей.

Непрерывные детерминированные системы. Если в модели системы не учитывается воздействие случайных факторов, а операторы переходов и выходов непрерывны (это означает, что малые изменения входных воздействий приводят к такого же порядка малым изменениям выходного воздействия и состояния системы), то состояния системы и выхода соответственно могут быть представлены в виде дифференциальных уравнений

(4)

(5)

где h, g — вектор функции состояний и выходов соответственно;

х, z, у — векторы входных воздействий, состояний и выходных воздействий соответственно.

В случае линейности таких систем, когда операторы переходов и выходов обладают свойствами однородности и аддитивности, вид уравнений (4) и (5) упрощается, что дает возможность аналитического решения или исследования известными методами с помощью вычислительных машин.

Построение математических моделей непрерывных линейных детерминированных систем в виде дифференциальных уравнений используется при анализе функционирования элементов и электрических цепей ВС.

Автоматы. Рассмотренные выше формализованные математические схемы применимы для систем, функционирующих в непрерывном времени. Системы, состояния которых определены в дискретные моменты времени получили название автоматов. Если за единицу времени выбран такт , то просто пишут: О, 1, 2,.... В каждый дискретный момент времени, за исключением <е> в автомат поступает входной сигнал х (t), под действием которого автомат переходит в новое состоя­ние в соответствии с функцией переходов

(6)

и выдает выходной сигнал, определяемый функцией выходов

(7)

Если автомат характеризуется конечными множествами состояний z, входных сигналов х и выходных сигналов у, он называется конечным автоматом. Функции переходов и выходов конечного автомата задаются таблицами, матрицами или графами.

Стохастические системы, функционирующие в дискретном времени, можно представлять вероятностными автоматами. Функция переходов вероятностного автомата определяет не одно конкретное состояние, а распределение вероятностей на множестве состояний, а функция выходов — распределение вероятностей на множестве выходных сигналов. Функционирование вероятностных автоматов изучается при помощи аппарата цепей Маркова. Для оценки характеристик систем, представляемых в виде автоматов, могут использоваться аналитические или имитационные методы.

Кроме приведенных математических схем для формализованного описания функционирования систем используются исчисление высказываний, тензорная алгебра, сети Петри, Е-сети и др..

Таким образом, построение математической модели предусматривает анализ концептуальной модели и исходных данных в целях выбора одной из подходящих формализованных схем, подбора необходимых множеств и конкретизации операторов. Если это не удается сделать для всей системы, то формализованные схемы могут быть применены для описания отдельных элементов, а вся система описывается с использованием программного или структурного подхода.

4. Выбор метода моделирования

Аналитические методы. Разработанная математическая модель функционирования системы может быть исследована различными методами — аналитическими или имитационными. С помощью аналитических методов анализа можно провести наиболее полное исследование модели. В некоторых случаях наличие аналитической модели делает возможным применение математических методов оптимизации. Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем. Применение аналитических методов для более сложных систем связано с большей по сравнению с другими методами степенью упрощения реальности и абстрагирования. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик всей системы или отдельных ее подсистем, а также на ранних стадиях проектирования систем, когда недостаточно информации для построения более точной модели. Они могут использоваться для анализа параллельных процессов в сложных системах.

Ряд аналитических моделей не поддается аналитическим решениям известными математическими методами. Для их исследования могут быть использованы численные методы. Они применимы к более широкому классу систем, для которых математическая модель представляется в виде системы уравнений, допускающей решение численными методами. Использование численных методов особенно эффективно с помощью быстродействующих ВС. Для исследования ВС, функционирование которых описывается марковскими процессами, разработано, например, программное средство для автоматизированного составления уравнений и их решения на ВС. Результатом исследования систем численными методами являются таблицы значений искомых величин для конечного набора значений параметров системы и нагрузки.

Если полученные уравнения не удается решить аналитическими или численными методами, то прибегают к качественным методам. Качественные методы позволяют в ряде случаев оценить асимптотические значения искомых величин, устойчивость, а также судить о поведении траектории системы в целом. Перечисленные свойства относятся к поведению отдельных траекторий. Рассматриваются и такие качественные свойства, которые характеризуют поведение совокупностей траекторий. Примером такого свойства является непрерывность, наличие которой говорит о том, что при малых изменениях параметров характеристики системы также мало изменяются. Следует отметить, что для сложных систем важность качественных методов возрастает.

Имитационные методы. Имитационное моделирование является наиболее универсальным методом исследования систем и количественной оценки характеристик их функционирования. При имитационном моделировании динамические процессы системы-оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношений длительностей и временных последовательностей отдельных операций. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. В процессе имитации, как при эксперименте с оригиналом, фиксируют определенные события и состояния или измеряют выходные воздействия, по которым вычисляют характеристики качества функционирования системы.

Имитационное моделирование позволяет рассматривать процессы, происходящие в системе, практически на любом уровне детализации. Используя алгоритмические возможности ВС, в имитационной модели можно реализовать любой алгоритм управления или функционирования системы. Модели, которые допускают исследование аналитическими методами, также могут анализироваться имитационными методами. Все это является причиной того, чтo имитационные методы моделирования становятся основными методами исследования сложных систем.

Методы имитационного моделирования различаются в зависимости от класса исследуемых систем, способа продвижения модельного времени и вида количественных переменных параметров системы и внешних воздействий.

В первую очередь можно разделить методы имитационного моделирования дискретных и непрерывных систем. Если все элементы системы имеют конечное множество состояний и переход из одного состояния в другое осуществляется мгновенно, то такая система относится к системам с дискретным изменением состояний, или дискретным системам. Если переменные всех элементов системы изменяются постепенно и могут принимать бесконечное множество значений, то такая система называется системой с непрерывным изменением состояний, или непрерывной системой. Системы, у которых имеются переменные того и другого типа, считаются дискретно-непрерывными. У непрерывных систем могут быть искусственно выделены определенные состояния элементов. Например, некоторые характерные значения переменных фиксируются как достижение определенных состояний. При моделировании ВС на системном уровне их зачастую удобно рассматривать как системы с дискретным изменением состояний.

Одним из основных параметров при имитационном моделировании является модельное время, которое отображает время функционирования реальной системы. В зависимости от способа продвижения модельного времени методы моделирования подразделяются на методы с приращением временного интервала и методы с продвижением времени до особых состояний. В первом случае модельное время продвигается на некоторую величину . Определяются изменения состояний элементов и выходных воздействий системы, которые произошли за это время. После этого модельное время снова продвигается на величину , и процедура повторяется. Так продолжается до конца периода моделирования Tm,. Шаг приращения времени зачастую выбирается постоянным, но в общем случае он может быть и переменным. Этот метод называют "принципом ".

Во втором случае в текущий момент модельного времени tсначала анализируются те будущие особые состояния — поступление дискретного входного воздействия (заявки), завершение обслуживания и т. п., для которых определены моменты их наступления . Выбирается наиболее раннее особое состояние, и модельное время продвигается до момента наступления этого состояния. Считается, что состояние системы не изменяется между двумя соседними особыми состояниями. Затем анализируется реакция системы на выбранное особое состояние. В частности, в ходе анализа определяется момент наступления нового особого.состояния. Затем анализируются будущие особые состояния, и модельное время продвигается до ближайшего. Процедура повторяется до завершения периода моделирования Тm. Данный метод называют «принципом особых состояний», или «принципом z». Благодаря его применению экономится машинное время моделирования. Однако он используется только тогда, когда имеется возможность определения моментов наступления будущих очередных особых состояний.

Количественные параметры системы и внешних воздействий могут быть детерминированными или случайными. По этому признаку различают детерминированное и статистическое моделирование. При статистическом моделировании для получения достоверных вероятностных характеристик процессов функционирования системы требуется их многократное воспроизведение с различными конкретными значениями случайных факторов и статистической обработкой результатов измерений. В основу статистического моделирования положен метод статистических испытаний, или метод Монте-Карло.

Особое значение имеет стационарность или нестационарность случайных независимых переменных системы и внешних воздействий. При нестационарном характере переменных, в первую очередь — внешних воздействий, что часто наблюдается на практике, должны быть использованы специальные методы моделирования, в частности метод повторных экспериментов.

Еще одним классификационным параметром следует считать схему формализации, принятую при создании математической модели. Здесь прежде всего необходимо разделить методы, ориентированные на алгоритмический (программный) или структурный (агрегатный) подход. В первом случае процессы управляют элементами (ресурсами) системы, а во втором — элементы управляют процессами, определяют порядок функционирования системы.

Из вышеизложенного следует, что выбор того или иного метода моделирования полностью определяется математической моделью и исходными данными.

Контрольные вопросы

1. Что понимается под сбором факалних данных для построения модели?

2. Как решаетса подбор вида закона распределения?

3. Что понимается под аппроксимацией функций?

4. Какие виды средств используютса для формализования описания функционирования систем?





Дата публикования: 2015-03-26; Прочитано: 367 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...