![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
1. 1) Свести к предложениям следующие формулы:
2) выполнить унификацию дизъюнктов.
| №варианта | Формула |
| 1. | ∀x(A(x)→B(y))&∀y(A(x)→(B(y)→C(z)))→ A(x) |
| 2. | ∀x(B(x)→∃z(A(z)))&∃y(A(z)→C(y))→ C(y) |
| 3. | ∀x(A(x)→∃y(B(y)))→∃y(A(x)∨C(z)∨B(y)) |
| 4. | ∀x(A(x)→∃z(C(z)))&∀y(C(z)→B(y))→(A(x)→B |
| 5. | ∀x(A(x)→B(y))&∀y(A(x)→(B(y)→C(z) |
| 6. | ∀x(A(x)→∃y(B(y)→C(z)))→∀z(A(x)&B(y)→C(z) |
| 7. | ∀x(A(x)→B(z))&∀y(C(y)→A(x))→∃z(C(y)→B(z) |
| 8. | ∀x((A(x)→B(y))→∀y((C(y)∨A(x)))→C(y) |
| 9. | ∀x(A(x)→B(y))&∀y(A(x)→(B(y)→C(z)))→(A(x) |
| 10. | ∀x(A(x)→B(y)&A(x)→∀y(B(y)→C(z)))→(A(x) |
| 11. | ∀x(A(x)→∃z(B(y)→C(z)))→∀y(B(y)→(A(x)→C(x)) |
| 12. | (∀x(A(x))→∃z(B(z)))→∀z((B(x)→C(z))→(A(x) |
| 13. | (∃x(A(x))→∀z(B(z)))→(B(x)∨A(x)) |
| 14. | (∀x(A(x))→∀y(B(y)))→∃y(C(y)&A(x)→C(y)&B |
| 15. | ∀x(A(x)→∃y(B(y)))→(B(y)→A(x)) |
| 16. | ∀x(B(x)→∃z(A(z)))&∃y(A(z)→C(y))→(C(y) |
| 17. | ∀x(A(x)→∃z(C(z)))&∀y(C(z)→B(y))→(A(x)→B |
| 18. | ∀x(A(x)→∃y(B(y)))→(B(y)→A(x)) |
| 19. | ∀x(A(x)→B(x))&∃y(B(x)→C(y))→∃z(C(y)→D(z |
| 20. | ∀x(A(x)→B(x))&∀z(C(z)→A(x))→∃y(C(z)→B(y |
| 21. | ∀x(B(x)→∀y(A(y)))&∀y(B(y)→(A(x)→C(z)))→ |
| 22. | ∀x(A(x)→B(y)&A(x)→∀y(B(y)→C(z)))→(A(x) |
| 23. | ∀x(A(x)→B(x))→(∀y(C(y)→A(x))→∃z(C(z)→B |
| 24. | |
| 25. | ∀x(B(x)→A(y))&(B(x)→∀y(A(y)→C(z)))→∃z(C |
| 26. | (∃x(A(x)→B(z))→∃y(C(y)∨A(x)))→∀z(C(y)∨B(z |
| 27. | (∀x(B(x))→∃y(A(y)))&(A(y)→∃yC(y))→(A(x) |
| 28. | ((∀x(A(x))→∃x(B(x)))→∃y(A(x)∨C(y)))→(B(x) |
| 29. | ∃x(A(x)→∀y(B(y)))&(A(x)→∀y(B(y)))→B(y) |
| 30. | ∀x(A(x)→∃y(B(y)))&(A(x)→B(x))→B(x) |
| 31. | ∀x(A(x)→B(x))&∀z(C(z)→A(x))→∃y(C(z)→B( |
| 32. | (∃x(B(x))→∀y(A(y)))&(B(x)→A(y))→A(z) |
| 33. | (∀x(B(x))→∃z(C(z)))→(A(y)&B(x)→A(y)&C(z) |
| 34. | ∃x(A(x)→B(y))→∀y∀z((C(z)→A(x))→(C(z)→B |
| 35. | (∀x(A(x))→∃z(C(z)))&∀y(C(z)→B(y))→A(x) |
| 36. | ∀x(A(x))→∃y(B(y))&∀y(C(y)→∃xD(x))→(A(x) |
| 37. | ∀x(A(x)→B(y))&∀z(C(z)→A(x))→∃y(C(z)→B(z) |
| 38. | (∀x(A(x)→∃z(B(z)))→∃y(A(x)∨C(y)))→(B(z)∨C |
| 39. | ∀x(B(x)→∀y(A(y)))&∀y(B(x)→(A(y)→C(z)))→ |
| 40. | ∀x(B(x)→A(y))&(B(x)→∀y(A(y)→C(z)))→∃z(B |
| 41. | ∀x(A(x)→B(x))→∀y((C(y)→A(x))→(C(y)→B(x |
| 42. | ∀x(A(x)→B(y))&(A(x)→∀y(B(y)→C(z)))→(A(x |
| 43. | (∀x(B(x))→∃z(C(z)))→(A(y)&B(x)→A(y)&C(z) |
| 44. | ∃x(A(x)→B(z))→∃y((C(y)∨A(x))→∀z(C(y)∨B(z) |
| 45. | ∀x(A(x)→B(y))&∀z(C(z)→A(x))→∃y(C(z)→B(y) |
| 46. | ∀x(A(x)→B(x))&∃y(B(x)→C(y))&∃z(C(y)→D(z) |
| 47. | (∀x(B(x)→∃y(A(y))))&∃y(A(x)→C(y))→C(y) |
| 48. | (∀x(A(x))→∃z(C(z)))&∀y(C(z)→B(y))→(A(x) |
| 49. | ∀x(A(x)→B(y))&∀y(A(x)→(B(y)→C(z))) |
Дата публикования: 2015-03-26; Прочитано: 699 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
