Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Предел сложной функции. Предельный переход в неравенствах. Предельный переход в неравенствах



Арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами. В этом пункте покажем, что неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.

Теорема. Если элементы сходящейся последовательности { xn }, начиная с некоторого номера, удовлетворяют неравенству xnb (xnb), то и предел a этой последовательности удовлетворяет неравенству ab (ab).

Доказательство. Пусть все элементы xn, по крайней мере начиная с некоторого номера, удовлетворяют неравенству xnb. Требуется доказать неравенство ab. Предположим, что a < b. Поскольку a - предел последовательности { xn }, то для положительного ε = b - a можно указать номер N такой, что при nN выполняется неравенство | xn - a | < b - a. Это неравенство эквивалентно следующим двум неравенствам: -(b - a) < xn - a < b - a. Используя правое из этих неравенств, получим xn < b, а это противоречит условию теоремы. Случай xnb рассматривается аналогично. Теорема доказана.

Замечание. Элементы сходящейся последовательности { xn } могут удовлетворять строгому неравенству xn > b, однако при этом предел a может оказаться равным b. Например, если , то xn > 0, однако .

Следствие 1. Если элементы xn и yn сходящихся последовательностей { xn } и { yn }, начиная с некоторого номера, удовлетворяют неравенству xnyn, то их пределы удовлетворяют такому же неравенству:

В самом деле, элементы последовательности { yn - xn } неотрицательны, а поэтому неотрицателен и ее предел . Отсюда следует, что

Следствие 2. Если все элементы сходящейся последовательности { xn } находятся на сегменте [ a, b ], то и ее предел c также находится на этом сегменте.

В самом деле, так как axnb, то acb.

Следующая теорема играет важную роль в различных приложениях.

Теорема. Пусть { xn } и { zn } - сходящиеся последовательности, имеющие общий предел a. Пусть, кроме того, начиная с некоторого номера, элементы последовательности { yn } удовлетворяют неравенствам xnynzn. Тогда последовательность { yn } сходится и имеет предел a.

Доказательство. Нам достаточно доказать, что последовательность { yn - a } является бесконечно малой. Обозначим через N* номер, начиная с которого выполняются неравенства, указанные в условии теоремы. Тогда, начиная с этого же номера, будут выполняться также неравенства xn - ayn - azn - a. Отсюда следует, что при nN* элементы последовательности { yn - a } удовлетворяют неравенству

| yn - a | ≤ max {| xn - a |, | zn - a |}.

Так как и , то для любого ε > 0 можно указать номера N 1 и N 2 такие, что при nN 1 | xn - a | < ε, а при nN 2 | zn - a | < ε. Пусть N = max{ N*, N 1, N 2}. Начиная с этого номера, имеет место неравенство | yn - a | < ε. Итак, последовательность { yn - a } - бесконечно малая. Теорема доказана.





Дата публикования: 2015-03-26; Прочитано: 1065 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...