![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Множество R действительных чисел. Геометрическое изображение действительных чисел. Ограниченные и неограниченные множества. Промежутки.
Понятие множества
Множество – совокупность некоторых объектов. Примерами множеств являются множества чисел, множества точек прямой, множество линий и др. Каждое отдельное множество задается правилом или законом, позволяющим судить, принадлежит объект данному множеству или нет.
Множества обозначаются прописными буквами латинского или готического алфавита: A, B,...,M, K,.... Если множество A состоит из элементов a,b,c,..., это обозначается с помощью фигурных скобок: A={a,b,c,...,}. Если a есть элемент множества A, то это записывают следующим образом: a Î A. Если же a не является элементом множества A, то пишут a Ï A. Одним из важных множеств является множество N всех натуральных чисел N={1,2,3,...,}. Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Æ.
Условимся вводить определение, когда это будет удобно, посредством следующего символа: = (равенства по определению), двоеточие ставится со стороны определяемого объекта.
Определение 1 (определение равенства множеств). Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из x Î A следует x Î B и обратно, из x Î B следует x Î A.
Формально равенство двух множеств записывается следующим образом:
(А=В) := " x ((x Î A) Û (x Î B)),
это означает, что для любого объекта x соотношения xÎ A и xÎ B равносильны.
Здесь " – квантор всеобщности (" x читается как "для каждого x ").
Определение 2 (определение подмножества). Множество А является подмножеством множества В, если любое х принадлежащее множеству А, принадлежит множеству В.
(A Ì B) := " x ((x Î A) Þ (x Î B))
Если AÌ B, но A¹ B, то A – собственное подмножество множества В.
Пример 1. Множество {2,4,6,..., 2n,...} является собственным подмножеством множества натуральных чисел. Пустое множество является подмножеством любого множества.
Дата публикования: 2015-03-26; Прочитано: 230 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!