Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Признаки сравнения



Если , и ряд сходится, то сходится и ряд .

Если , и ряд расходится, то расходится и ряд .

Признаки сравнения можно сформулировать в такой форме:

Если заданы ряды , и существует , то ряды и сходятся либо расходятся одновременно.

Пример:

1. Исследуем сходимость ряда . Очевидно, что . Так как гармонический ряд расходится, то и ряд также расходящийся, и, согласно признаку сравнения, данный ряд расходится.

2. Исследовать сходимость ряда . Имеем: . Ряд сходится как сумма геометрической прогрессии со знаменателем . Следовательно, согласно признаку сравнения ряд сходится.





Дата публикования: 2015-03-26; Прочитано: 208 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...