Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
В основе термодинамики лежит различие между двумя типами процессов — обратимыми и необратимыми.
Понятие энтропии позволяет отличать в случае изолированных систем обратимые процессы (энтропия максимальна и постоянна) от необратимых процессов (энтропия возрастает).
Благодаря работам великого австрийского физика Людвига Больцмана, это отличие было сведено с макроскопического уровня на микроскопический. Состояние макроскопического тела (системы), заданное с помощью макропараметров (параметров, которые могут быть измерены макроприборами — давлением, температурой, объемом и другими макроскопическими величинами, характеризующими систему в целом), называют макросостоянием.
Состояние макроскопического тела, охарактеризованное настолько подробно, что оказываются заданными состояния всех образующих тело молекул, называется микросостоянием.
Всякое макросостояние может быть осуществлено различными способами, каждому из которых соответствует некоторое микросостояние системы. Число различных микросостояний, соответствующих данному макросостоянию, называется статистическим весом W, или термодинамической вероятностью макросостояния. Попробуем разобраться в этом.
Мы знаем, что весь окружающий мир состоит из молекул и атомов. Поместим в некоторый сосуд с теплоизолированными стенками некоторое количество газа, число молекул которого равно N. Выделим какую-либо одну молекулу. Предположим, что каким-либо образом мы можем ее пометить, скажем, можем окрасить ее в зеленый цвет. Если бы мы могли это сделать, то получили бы возможность отличать ее от других молекул и тем самым отследить ее поведение в данном объеме. Наблюдая за этой молекулой, мы очень скоро убедимся, что она может занимать любое положение в сосуде. Причем положение ее в любое мгновение оказывается случайным.
Теперь разделим наш объем на две половины. Мы увидим, что наша молекула, беспорядочно блуждая, постоянно натыкаясь (сталкиваясь) с другими молекулами, пробудет в одной из половинок сосуда ровно половину времени, в течение которого мы за ней наблюдаем. В этом случае, говорят, что вероятность ее пребывания в одной из половинок сосуда равна 1/2. Если мы будем наблюдать уже за двумя мечеными молекулами, то вероятность того, что мы обнаружим сразу обе молекулы в одной из половинок сосуда, окажется равной произведению вероятностей каждой
молекулы 1/2 • 1/2 = 1/4. Аналогично для трех молекул эта вероятность равна (1/2)3, а для N молекул — (1/2)N. В 29 граммах воздуха, например, содержится число молекул N, равное 6,023 • 1023. Соответственно, вероятность нахождения сразу всех молекул в одной половине объема сосуда (1/2)N ничтожно мала. Такое событие является маловероятным. Нам это и не кажется странным. Странным было бы, если бы в одной комнате все молекулы воздуха вдруг в некоторый момент времени собрались бы в одной ее половине, а в другой половине оказалось бы безвоздушное пространство. И если бы мы не успели или не догадались, что надо срочно перепрыгнуть в нужную половину комнаты, то умерли бы от кислородного голодания. Мы знаем, что такое событие является маловероятным. Вероятность же того, что все молекулы находятся во всем объеме данного сосуда, максимальна и примерно равна единице. Состояние это может реализовываться наибольшим числом способов, когда любая из молекул может находиться в любой точке пространства сосуда. В этом случае статистический вес, то есть число способов, которым может быть реализовано это состояние, максимальный.
Пусть в некоторый момент времени нам удалось загнать все молекулы с помощью диафрагм (перегородок) в правую верхнюю часть сосуда. Остальные 3/4 объема сосуда оставались при этом пустыми. Далее уберем диафрагмы и увидим, что молекулы заполнят весь объем сосуда, то есть перейдут из состояния с меньшей вероятностью в состояние с большей вероятностью. То есть процессы в системе идут только в одном направлении: от некоторой структуры (порядка, когда все молекулы содержались в верхнем правом углу объема сосуда) к полной симметрии (хаосу, беспорядку, когда молекулы могут занимать любые точки пространства сосуда).
Больцман первым увидел связь между энтропией и вероятностью. При этом он понял, что энтропия должна выражаться через логарифм вероятности. Ибо если мы рассмотрим, скажем, две подсистемы одной системы, каждая из которых характеризуется статистическим весом, соответственно W1 и W2, полный статистический вес системы равен произведению статистических весов подсистем:
в то время как энтропия системы S равна сумме энтропии подсистем:
Больцман связал понятие энтропии S с InW. В 1906 году Макс Планк написал формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы:
S = k lnW
Коэффициент пропорциональности к был рассчитан Планком и назван постоянной Больцмана. Формула «S = k lnW» выгравирована на памятнике Больцману на его могиле в Вене.
Идея Больцмана о вероятностном поведении отдельных молекул явилась развитием нового подхода при описании систем, состоящих из огромного числа частиц, впервые развитого Максвеллом. Максвелл пришел к пониманию того, что в этих случаях физическая задача должна быть поставлена иначе, чем в механике Ньютона. Очевидно, что наш пример с мечеными молекулами сам по себе неосуществим, ибо в принципе невозможно проследить в течение значительного интервала времени за движением отдельной молекулы. Невозможно также определить точно координаты и скорости всех молекул макроскопического тела одновременно в данный момент времени. Задачу следует ставить иначе, а именно — попытаться найти вероятность того, что данная молекула обладает таким-то значением скорости. Максвелл ввел для описания случайного характера поведения молекул понятие вероятности, вероятностный (статистический закон). Используя новый подход, Максвелл вывел закон распределения числа молекул газа по скоростям. Этот закон вызвал длительную дискуссию, длившуюся десятилетия вплоть до изготовления молекулярных насосов, позволивших произвести экспериментальную проверку закона. В 1878 году Больцман, как уже говорилось, применил понятие вероятности, введенное Максвеллом, и показал, что второй закон термодинамики также является следствием более глубоких статистических законов поведения большой совокупности частиц.
Таким образом, с развитием статистической физики и термодинамики на место причинных динамических законов
становятся статистические законы, позволяющие предвидеть эволюцию природы не с абсолютной достоверностью, а лишь с большой степенью вероятности.
Дата публикования: 2015-02-28; Прочитано: 1705 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!