Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Точка зрения Больцмана означала, что необратимое возрастание энтропии в изолированной системе, которая не обменивается энергией с окружающей средой, следует рассматривать как проявление все увеличивающегося хаоса, постепенного забывания начальной асимметрии, ибо асимметрия приводит к уменьшению числа способов, которыми может быть осуществлено данное макросостояние, то есть к уменьшению термодинамической вероятности W. Так что любая изолированная система самопроизвольно эволюционирует в направлении забывания начальных условий, в направлении перехода в макроскопическое состояние с максимальной W, соответствующего состоянию хаоса и максимальной симметрии. При этом энтропия возрастает, что соответствует самопроизвольной эволюции системы. Закон этот обойти нельзя, возрастание энтропии является платой за любой выигрыш в работе, оно присутствует во всех физических явлениях. В состоянии теплового равновесия энтропия достигает своего максимального значения. Иными словами, в равновесном состоянии существует состояние молекулярного хаоса, что означает полное забвение системой своего начального состояния, несохранения системой информации о своем прошлом.
По словам Эддингтона, возрастание энтропии, определяющее необратимые процессы, есть «стрела времени». Для изолированной системы будущее всегда расположено в направлении возрастания энтропии. Это и отличает будущее от настоящего, а настоящее от прошлого. То есть возрастание энтропии определяет направление, стрелу времени. Энтропия же возрастает по мере увеличения беспорядка в системе. Поэтому любая изолированная физическая система обнаруживает с течением времени тенденцию к переходу от порядка к беспорядку. Старая концепция движения, которая не обращала должного внимания на необратимые процессы, по существу, описывала движение как постоянное повторение одного и того же круга превращений. Сфор-
мулировав II начало термодинамики, Клаузиус проводит четкую границу между движением как повторением и движением как необратимым процессом. «Часто приходится слышать, — пишет он, — что все в мире происходит в замкнутом круге... Когда первый основной принцип механической теплоты был сформулирован, его, пожалуй, можно было счесть за блестящее подтверждение вышеупомянутого мнения... Но второй основной принцип механической теплоты противоречит этому мнению решительным образом... Отсюда вытекает, что состояние Вселенной должно все более и более изменяться в определенном направлении»12.
4.5. «Демон Максвелла»
С возникновением термодинамики в физике сложилась весьма щекотливая ситуация. Дело в том, что законы ньютоновской классической механики являются обратимыми. Это своим следствием содержит тот факт, что в классической динамической системе всегда можно, варьируя начальные условия, привести систему в определенное, «нужное», заранее выбранное состояние. Иными словами, жесткая детерминированность законов классической физики, отсутствие в ней элементов вероятности, случайности определяют возможность воздействия на систему, управления системой. Наиболее ярким примером подобного детерминированного описания может служить «демон Лапласа».
Второе начало термодинамики указывает на то обстоятельство, что вследствие необратимого характера протекания процессов в термодинамических системах, они не могут быть управляемыми до конца. И. Пригожин и И. Стенгерс очень образно выразили этот факт словами: «Необратимое увеличение энтропии описывает приближение системы к состоянию, неодолимо «притягивающему» ее, предпочитаемому ею перед другими, — состоянию, из которого система не выйдет по «доброй воле»13.
Однако II начало термодинамики справедливо для системы с большой совокупностью частиц. На это обстоятельство особенно обращал внимание Максвелл, говоря о том, что в системах с малым количеством объектов следствием статистических законов должно стать нарушение
второго начала термодинамики. И если бы существовало такое существо («демон Максвелла»), которое обладало бы способностью видеть, следить за каждой молекулой, отбирать отдельные молекулы, то оно могло бы нарушить закон возрастания энтропии. Так, если бы это существо отбирало бы самые быстрые молекулы и перекладывало бы их во второй сосуд, то в первом сосуде газ охлаждался бы, а во втором нагревался. Так что с помощью демона Максвелла можно было бы нагревать газ во втором сосуде без расхода энергии, просто за счет умелого разделения молекул газа на две части. С точки зрения классической механики, если рассматривать молекулы в качестве материальных точек, здесь не возникает никакого парадокса. Сам Максвелл считал, что если в макроскопической теории следует оперировать усредненными величинами и статистическими закономерностями, что отличает это описание от описания, принятого в классической механике, то для микропроцессов такого различения не требуется: здесь тепловые и механические явления тождественны по своей сути. Разрешение парадокса с демоном Максвелла было дано Сциллардом в 1928 году. Демон, для того, чтобы осуществлять наблюдение за молекулами, должен иметь размеры, ненамного превышающие размеры самих молекул. Но при этом те молекулы (небольшое количество их, составляющих самого демона) все время сами будут пребывать в хаотическом движении. Чтобы исключить хаотическое движение самого демона, надо все время поддерживать его при очень низкой температуре. Вот и получается, что для подавления собственного хаотического движения демона, его собственных флуктуации требуется не меньше энергии, чем демон мог бы раздобывать, неутомимо работая по разделению быстрых (горячих) молекул и медленных (холодных).
Дата публикования: 2015-02-28; Прочитано: 841 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!