Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Билет №22 Дифференциальное уравнение



ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЩИЕ СВЕДЕНИЯ О ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЯХ

Основные понятия

При решении различных задач математики, физики, химии и других наук часто пользуются математическими моделями в виде уравнений, связывающих независимую переменцую, искомую функцию и ее производные. Такие уравнения называются диффepeнциaльными (термин принадлежит Г.Лейбницу, 1676 г.). Решением дифференциального уравнения называется функция, которая при подстановке в уравнение обращает его в тождество.

Так, решением уравнения y'=ƒ(х) является функция y=F(x) - первообразная для функции ƒ(x),

Рассмотрим некоторые общие сведения о дифференциальных уравнениях (ДУ).

Если искомая (неизвестная) функция зависит от одной переменной, то ДУ называют обыкновенным; в противном случае - ДУ в частных производных. Далее будем рассматривать только обыкновенные ДУ.

Наивысший порядок производной, входящей в ДУ, называется порядком этого уравнения.

Например, уравнение y'''- Зy''+2у=0 - обыкновенное ДУ третьего порядка, а уравнение х2y'+5хy=y2 - первого порядка; у • z'x=х • z'y - ДУ в частных производных первого порядка.

Процесс отыскания решения ДУ называется его интегрированием, а график решения ДУ - интегральной кривой.

Рассмотрим некоторые задачи, решение которых приводит к дифференциальным уравнениям.





Дата публикования: 2015-01-26; Прочитано: 407 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...