Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Выпуклость графика функции. Точки перегиба



График дифференцируемой функции у=ƒ(х) называется выпуклым вниз на интервале (а;b), если он расположен выше любой ее касательной на этом интервале. График функции у=ƒ(х) называется выпуклым вверх на интервале (а;b), если он расположен ниже любой ее касательной на этом интервале.

Точка графика непрерывной функции у=ƒ(х), отделяющая его части разной выпуклости, называется точкой перегиба.

На рисунке 154 кривая у=ƒ(х) выпукла вверх в интервале (а;с), выпукла вниз в интервале (с;b), точка М(с;ƒ(с)) — точка перегиба.

Интервалы выпуклости вниз и вверх находят с помощью следующей теоремы.

Теорема Если функция у=ƒ(х) во всех точках интервала (а;b) имеет отрицательную вторую производную, т. е. ƒ"(х)<0, то график функции в этом интервале выпуклый вверх. Если же ƒ"(х)>0  xє(а;b) — график выпуклый вниз.

▲Пусть ƒ"(х)<0  xє(а;b). Возьмем на графике функции произвольную точку М с абсциссой х0є(а;b) и проведем через М касательную (см. рис. 155).

Покажем, что график функции расположен ниже этой касательной. Для этого сравним в точке хє(а; b) ординату у кривой у=ƒ(х) с ординатой укас ее касательной. Уравнение касательной, как известно, есть

Укас-ƒ(х0)=ƒ'(х0)(х-х0), т.е. Укас=ƒ(х0)+f(x0)(x-х0).

Тогда у-укас=ƒ(х)-ƒ(х0)-ƒ'(х0)(х-х0). По теореме Лагранжа, ƒ(х)-ƒ(х0)=ƒ'(с)(х-x0), где с лежит между х0 и х. Поэтому

У-Укас=ƒ'(с)(х-х0)-ƒ'(х0)(х-х0),

т. е.

У-Укас=(ƒ'(с)-ƒ'(х0))(х-х0).

Разность ƒ'(с)-ƒ'(х0) снова преобразуем по формуле Лагранжа:

ƒ'(с)-ƒ'(х0)=ƒ"(с1)(с-х0),

где с1 лежит между х0 и с. Таким образом, получаем

У-Укас=f"(c1)(c-х0)(х-х0).

Исследуем это равенство:

1) если х>х0, то х-х0>0, с-х0>0 и f"(c1)<0. Следовательно, У-Укас<0, т. е. у<укас:

2) если х<х0, то х-х0<0, с-х0<0 и f"(c1)<0. Следовательно, У-Укас<0, т. е. у<укас:

Итак, доказано, что во всех точках интервала (а;b) ордината касательной больше ординаты графика, т. е. график функции выпуклый вверх. Аналогично доказывается, что при ƒ"(х)>0 график выпуклый вниз. ▼

Для нахождения точек перегиба графика функции используется следующая теорема.

Теорема (достаточное условие существования точек перегиба). Если вторая производная ƒ"(х) при переходе через точку х0, в которой она равна нулю или не существует, меняет знак, то точка графика с абсциссой х0 есть точка перегиба.

Пусть ƒ"(х)<0 при х<х0 и ƒ"(х)>0 при х>х0. Это значит, что слева от х=х0 график выпуклый вверх, а справа — выпуклый вниз. Следовательно, точка (х0;ƒ(х0)) графика функции является точкой перегиба.

Аналогично доказывается, что если ƒ"(х)>0 при х<x0 и ƒ"(х)<0 при х>х0, то точка (х0;ƒ(х0)) — точка перегиба графика функции у=ƒ(х).

<< Пример 25.12

Исследовать на выпуклость и точки перегиба график функции у=х5-х+5.

Решение: Находим, что у'=5х4-1, у"=20х3. Вторая производная существует на всей числовой оси; у"=0 при х=0.

Отмечаем, что у">0 при х>0; у"<0 при х<0.

Следовательно, график функции у=х5-х+5 в интервале (- ∞;0) — выпуклый вверх, в интервале (0; ∞) — выпуклый вниз. Точка (0;5) есть точка перегиба.





Дата публикования: 2015-01-26; Прочитано: 374 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...