Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Билет №5 БЛЕЯТЬ!Определенный интеграл как предел интегральной суммы



   

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х0=а, x1, х2,..., хn = В (х0 <x1 <...< хn) разобьем отрезок [а, b] на n частичных отрезков [х01], [x1; х2],..., [хn-1n] (см. рис. 167).

2. В каждом частичном отрезке [xi-1;xi], i = 1,2,...,n выберем произвольную точку сi є [xi-1; xi] и вычислим значение функции в ней, т. е. величину ƒ(сi).

3. Умножим найденное значение функции ƒ (сi) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка: ƒ (сi) • ∆хi.

4. Составим сумму Sn всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка: λ = max ∆xi(i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма Sn имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) — подынтегральной функцией, ƒ(х) dx — подынтегральным выражением, х — переменной интегрирования, отрезок [а; b] — областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интеграл называется интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

Формула Ньютона-Лейбница

Простым и удобным методом вычисления определенного интеграла от непрерывной функции является формула Ньютона-Лейбница:

Применяется этот метод во всех случаях, когда может быть найдена первообразная функции F(x) для подынтегральной функции ƒ (х).

Например,

При вычисленииопределенных интегралов широко используется метод замены переменной и метод интегрирования по частям.

39.2. Интегрирование подстановкой (заменой переменной)

Пусть для вычисления интеграла от непрерывной функции

сделана подстановка х = φ(t).

Теорема 39.1. Если:

1) функция х = φ(t) и ее производная х' = φ'(t) непрерывны при t є [а;β];

2) множеством значений функции х = φ(t) при t є [а,β] является отрезок [а; b];

3) φ(а)=а и φ(β)=b.

то

▼Пусть F(x) есть первообразная для ƒ(х) на отрезке [а;b]. Тогда по формуле Ньютона-Лейбница Так как (F(φ(t))' = f(φ(t)) - φ'(t), то F(φ(t)) является первообразной для функции f(φ(t)) -φ'(t), t  [а;β]. Поэтому по формуле Ньютона—Лейбница имеем

Формула (39.1) называется формулой замены переменной в определенном интеграле. Отметим, что:

1) при вычислении определенного интеграла методом подстановки возвращаться к старой переменной не требуется;

2) часто вместо подстановки х = φ(t) применяют подстановку t = g(x);

3) не следует забывать менять пределы интегрирования при замене переменных!

Пример 39.1. Вычислить

Решение: Положим х = 2 sin t, тогда dx = 2 cos t dt. Если х=0, то t = 0; если x = 2, то t = . Поэтому

39.3. Интегрирование по частям

Теорема 39.2. Если функции u = u(х) и v = v(x) имеют непрерывные производные на отрезке [а; b], то имеет место формула

▼На отрезке [а; b] имеет место равенство (uv)' = u'v+uv'. Следовательно, функция uv есть первообразная для непрерывной функции u'v+uv'. Тогда по формуле Ньютона-Лейбница имеем:

Следовательно,

Формула (39.2) называется формулой интегрирования по частям для определенного интеграла.

Пример 39.2. Вычислить

Решение: Положим

Применяя формулу (39.2), получаем

Пример 39.3. Вычислить интеграл

Решение: Интегрируем по частям. Положим

Поэтому

39.4. Интегрирование четных и нечетных функций в симметричных пределах

Пусть функция ƒ(х) непрерывна на отрезке [-а; а], симметричном относительно точки х = 0. Докажем, что

▼Разобьем отрезок интегрирования [-а; а] на части [-а; 0] и [0; а]. Тогда по свойству аддитивности

В первом интеграле сделаем подстановку х = -t. Тогда

(согласно свойству: «определенный интеграл не зависит от обозначения переменной интегрирования»). Возвращаясь к равенству (39.4), получим

Если функция ƒ(х) четная (ƒ(-х) = ƒ(х)), то ƒ(-х) + ƒ(х) = 2ƒ(х); если функция ƒ(х) нечетная (ƒ(-х) = - ƒ(х)), то ƒ(-х) + ƒ(х) = 0. Следовательно, равенство (39.5) принимает вид (39.3).▲

Благодаря доказанной формуле можно, например, сразу, не производя вычислений, сказать, что





Дата публикования: 2015-01-26; Прочитано: 1336 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...