Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Уравнение плоскости в отрезках



Если плоскость пересекает оси OX, OY и OZ в точках с координатами (a, 0, 0), (0, b, 0) и (0, 0, с), то она может быть найдена, используя формулу уравнения плоскости в отрезках

x + y + z = 1
a b c

Уравнение плоскости в отрезках
Пусть плоскость отсекает на осях Ох, Оу и Оz соответственно отрезки a, b и c, т. е. проходит через три точки A(a;0;0), B(0;b;0) и C(0;0;c) (см.рис. 70). Подставляя координаты этих точек в уравнение (12.6), получаем

Раскрыв определитель, имеем , т. е. или

(12.7)

Уравнение (12.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости.
Нормальное уравнение плоскости
Положение плоскости Q вполне определяется заданием единичного вектора , имеющего направление перпендикуляра ОК, опущенного на плоскость из начала координат, и длиной p этого перпендикуляра (см. рис. 71).

Пусть ОК = p, а α, β, g — углы, образованные единичным вектором ё с осями Ох, Оу и Οz. Тогда . Возьмем на плоскости произвольную точку М(х; у; z) и соединим ее с началом координат. Образуем вектор . При любом положении точки Μ на плоскости Q проекция радиус-вектора на направление вектора всегда равно р: , т. е. или

(12.8)

Уравнение (12.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов f и e, уравнение (12.8) перепишем в виде

(12.9)

Уравнение (12.9) называется нормальным уравнением плоскости в координатной форме.

Отметим, что общее уравнение плоскости (12.4) можно привести к нормальному уравнению (12.9) так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части уравнения (12.4) на норми­рующий множитель , где знак берется противоположным знаку свободного члена D общего уравнения плоскости.

5 вопрос: Скалярное произведение векторов. Его свойство. Приложение скалярного произведения векторов (работа, произведение одного вектора на другой, угол между векторами)
Скалярное произведение векторов и будем обозначать как . Тогда формула для вычисления скалярного произведения имеет вид , где и - длины векторов и соответственно, а - угол между векторами и .

Из определения скалярного произведения видно, что если хотя бы один из умножаемых векторов нулевой, то .

Вектор можно скалярно умножить на себя. Скалярное произведение вектора на себя равно квадрату его длины, так как по определению .
Определение.
Скалярное произведение вектора на себя называется скалярным квадратом.
Формулу для вычисления скалярного произведения можно записать в виде , где - числовая проекция вектора на направление вектора , а - числовая проекция вектора на направление вектора .

Таким образом, можно дать еще одно определение скалярного произведения двух векторов.
Определение.
Скалярным произведением двух векторов и называется произведение длины вектора на числовую проекцию вектора на направление вектора или произведение длины вектора на числовую проекцию вектора на направление вектора .
6.2. Свойства скалярного произведения
1. Скалярное произведение обладает переместительным свойством: ab=ba


Решение:


5. Если векторы а и b(ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если a ^ b, то ab=0. Справедливо и обратное утверждение: если ab =0 и а¹ 0¹b, то а ^ b

.
6.3. Выражение скалярного произведения через координаты
Пусть заданы два вектора


Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:

т.е

Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.
Пример 6.2.
Доказать, что диагонали четырехугольника, заданного координатами вершин А(-4;-4;4), В(- 3;2;2),C(2; 5;1), D(3;-2;2), взаимно перпендикулярны.
Решение: Составим вектора АС и BD, лежащие на диагоналях данного четырехугольника. Имеем: АС = (6;9;-3) и BD = (6;-4;0). Найдем скалярное произведение этих векторов:
АС • BD = 36 - 36 - 0 = 0.
Отсюда следует, что AC ^ BD. Диагонали четырехугольника ABCD взаимно перпендикулярны.
6.4. Некоторые приложения скалярного произведения
Угол между векторами
Определение угла φ между ненулевыми векторами а = (ax; ay; az) и b=(bх; bу; bг):


Отсюда следует условие перпендикулярности ненулевых векторов а и b:





Дата публикования: 2015-02-03; Прочитано: 301 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...