Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Примеры линейных пространств



1). Пространства и ,состоящие из всевозможных (упорядоченных) наборов из n чисел (соответственно -- действительных или комплексных). Сложение и умножение определяются формулами

С этими пространствами вы достаточно хорошо знакомы по курсам алгебры и анализа.

2). Непрерывные (действительные или комплексные) функции на некотором отрезке [ a, b ] с обычными операциями сложения функций и умножения их на числа образуют линейное пространство C [ a, b ], являющееся одним из важнейших в анализе и уже встречавшееся вам, например, при изучении функциональных рядов.

3). Пространство быстроубывающих функций ,с которым вы работали, изучая преобразование Фурье.

4). Пространство l2, в котором элементами служат последовательности чисел (действительных или комплексных)

удовлетворяющие условию

с операциями

является линейным пространством. Тот факт, что сумма двух последовательностей, удовлетворяющих условию (1), также удовлетворяет этому условию, вытекает из элементарного неравенства

Конечный набор элементов линейного пространства L называется линейно зависимым, а сами элементы -- линейно зависимыми, если существуют такие числа ,не все равные нулю, что

В противном случае эти элементы называются линейно независимыми. Иными словами, элементы называются линейно независимыми, если из равенства

вытекает, что .

Бесконечная система элементов пространства L называется линейно независимой, если любая ее конечная подсистема линейно независима.

Если в пространстве L можно найти n линейно независимых элементов, а любые n +1 элементов этого пространства линейно зависимы, то говорят, что L имеет размерность n. Если же в L можно указать систему из произвольного конечного числи линейно независимых элементов, то говорят, что пространство L бесконечномерно.

Легко понять, что в приведенных выше примерах 2)-4) пространства бесконечномерны, а в примере 1) -- имеют размерность n.

Непустое подмножество L ' линейного пространства L называется подпространством, если оно само образует линейное пространство по отношению к опрелеленным в L операциям сложения и умножения на число.

Иначе говоря, есть подпространство, если из , следует, что при любых числах .





Дата публикования: 2015-02-03; Прочитано: 169 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...