Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Погрешность интерполирования



Поставим вопрос о том, насколько хорошо интерполяционный полином приближает функцию на отрезке [a,b].
Рассмотри м остаточный член:
, x ∈ [a, b].
По определению интерполяционного полинома
поэтому речь идет об оценке при значениях .
Пусть имеет непрерывную (n+1) производную на отрезке [a, b].
Тогда погрешность определяется формулой:
,
где ,
- точка из [a, b].
Так как точка наизвестна, то эта формула позволяет только оценить погрешность:

где
Из вида множетеля следует, что оценка имеет смысл только при . Если это не так, то при интерполяции используются полиномы низких степеней (n = 1,2).





Дата публикования: 2015-02-03; Прочитано: 315 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...