![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
В ряде случаев весьма удобным приемом уточнения корня уравнения является метод последовательных приближений (метод итераций).
Пусть с точностью необходимо найти корень уравнения f(x)=0, принадлежащий интервалу изоляции [a,b]. Функция f(x) и ее первая производная непрерывны на этом отрезке.
Для применения этого метода исходное уравнение f(x)=0 должно быть приведено к виду
![]() | (4.2) |
В качестве начального приближения 0 выбираем любую точку интервала [a,b].
Далее итерационный процесс поиска корня строится по схеме:
![]() | (4.3) |
В результате итерационный процесс поиска реализуется рекуррентной формулой (4.3). Процесс поиска прекращается, как только выполняется условие
![]() | (4.4) |
или число итераций превысит заданное число N.
Для того, чтобы последовательность х1, х2,…, хn приближалась к искомому корню, необходимо, чтобы выполнялось условие сходимости:
![]() | (4.5) |
Рис. 4.6. Геометрический смысл метода
Переходим к построению схемы алгоритма (рис. 4.7). Вычисление функции оформим в виде подпрограммы.
Рис. 4.7. Схема алгоритма уточнения корня методом итераций
Дата публикования: 2015-02-03; Прочитано: 434 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!