Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Касательная плоскость к шару




Плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 457).



Касательная плоскость имеет с шаром только одну общую точку — точку касания.

53) Обем та площина поверхні призми.

Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.

Площадь поверхности и объём призмы

Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:

54) Обем та плошина поверхні піраміди.

Пирамидой называется многогранник одна из граней которого является произвольным многоугольником, а остальные грани — треугольники, имеющие общую вершину.

Площадь поверхности и объём пирамиды

Пусть — высота пирамиды, — периметр основания пирамиды, — площадь основания пирамиды, — площадь боковой поверхности пирамиды, — площадь полной поверхности пирамиды, — объем пирамиды. Тогда имеют место следующие соотношения:

Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то

55) Обем та плошина поверхні зрізаної піраміди.

Усеченной пирамидой называется многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.

Площадь поверхности и объём усеченной пирамиды

Пусть — высота усеченной пирамиды, и — периметры оснований усеченной пирамиды, и — площади оснований усеченной пирамиды, — площадь боковой поверхности усеченной пирамиды, — площадь полной поверхности усеченной пирамиды, — объем усеченной пирамиды. Тогда имеют место следующие соотношения:

.

Если все двугранные углы при основании усеченной пирамиды равны , а высоты всех боковых граней пирамиды равны , то

56) Обем та площа обема циліндра.

Цилиндр – тело которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом и всех отрезков соединяющиеся соответственные точки кругов.

Площадь боковой поверхности круглого цилиндра равна произведению длины окружности основания на высоту:

1. S=2 π rh

Полная площадь поверхности круглого цилиндра равна сумме площадей боковой поверхности круглого цилиндра и удвоенной площади основания. Основание круглого цилиндра есть круг и его площадь вычисляется по формуле площади круга:

2. S= 2 π rh+ 2 π r2= 2 π r(h+ r)

Формулы для расчета объема цилиндра:

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

57) Обем та площа обема конуса, зрізаного конуса.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом. См. также Площадь поверхности усеченного конуса

58) Обем кулі та її частин. Площа сфери

1) Объем шара вычисляется по приведенной ниже формуле.





Дата публикования: 2015-01-26; Прочитано: 644 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...