Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение. а1)Находим область определения функции: = )



а1) Находим область определения функции: = ).

а2) Поскольку данная функция является элементарной, то областью её непрерывности является область определения , а точками разрыва являются точки и , не принадлежащие множеству , но являющиеся предельными точками этого множества (точками в любой окрестности которых содержатся точки данного множества). Исследуем характер разрыва в точках и , вычислив в них односторонние пределы функции:

, ,

, .

Так как односторонние пределы функции в точках и - бесконечные, то данные точки являются точками бесконечного разрыва.

а3) Функция не является периодической.

Функция , в аналитическое выражение которой входит хотя бы одна непериодическая функция периодической не является.

Проверяем является ли функция чётной или нечётной. Так как область определения функции = ) не симметрична относительно точки , то данная функция – общего вида.

а4) Находим точки пересечения графика с осями координат.

Так как , то точек пересечения графика с осью нет.

Положим и решим уравнение . Его решением является . Следовательно, точка - точка пересечения графика с осью .

а5) Находим вертикальные и наклонные асимптоты графика функции.

Прямая является вертикальной асимптотой, тогда и только тогда, когда является точкой бесконечного разрыва функции .

Так как точки и - точки бесконечного разрыва данной функции, то вертикальными асимптотами графика функции являются прямые и .

Прямая является наклонной асимптотой графика функции при тогда и только тогда, когда одновременно существуют конечные пределы: и .

Вычисляем сначала пределы при : , .

В дальнейшем будем иметь в виду следующий часто встречающийся предел:

Следовательно , т.е. - наклонная (горизонтальная) асимптота графика функции при .

Аналогично вычисляем пределы при : , Следовательно , т.е. - наклонная (горизонтальная) асимптота графика функции при .

а6) Определяем интервалы возрастания, убывания, экстремумы функции. Для этого находим первую производную функции:

и определяем критические точки функции , т.е. точки в которых или не существует:

;

не существует при и .

Таким образом, единственной критической (стационарной) точкой функции является точка .

Исследуем знак производной в интервалах, на которые критические точки функции разбивают её область определения , и найдём интервалы возрастания, убывания, экстремумы функции. Результаты исследования представим следующей таблицей:

+ +
возрастает возрастает убывает убывает

Так как при переходе слева направо через точку производная меняет знак с «+» на «», то точка является точкой локального максимума и .

а7) Определяем интервалы выпуклости, вогнутости, точки перегиба графика функции. Для этого находим вторую производную функции:

и определяем точки возможного перегиба , т.е. точки в которых или не существует: , так как (квадратное уравнение не имеет действительных корней); не существует при и .

Таким образом, функция не имеет точек возможного перегиба.

Исследуем знак второй производной в интервалах, на которые точки возможного перегиба функции разбивают её область определения , и найдём интервалы выпуклости, вогнутости, точки перегиба графика функции. Результаты исследования представим следующей таблицей:

+ +
график вогнутый график выпуклый график вогнутый

Точек перегиба нет.

а8) На основании полученных результатов строим график функции (рис.3)

Рис.3.

Наибольшее и наименьшее значения функции непрерывной и кусочно-дифференцируемой (дифференцируемой, за исключением, быть может, конечного числа точек) на отрезке достигается или в точках , в которых или не существует, или на концах отрезка.

б1) Находим первую производную функции:

и определяем внутренние критические точки функции , т.е. точки в которых или не существует:

, точек в которых не существует нет. Таким образом, единственной внутренней критической (стационарной) точкой функции на отрезке является точка .

б2) Вычисляем значения функции во внутренних критических точках и на концах отрезка : , , .

б3) Сравниваем значения , , и находим наименьшее и наибольшее значения функции на отрезке :

, .

Уравнение касательной к графику функции в точке имеет вид:

в1) Вычисляем значение функции в точке :

.

в2) Находим первую производную функции:

и вычисляем её значение в точке : .

в3) Составляем уравнение касательной: изаписываем его в виде : .

Ответ: а) Рис.3; б) , ; в) .

61 – 70. Для указанной функции требуется: а) найти дифференциал и вторую частную производную ; б) вычислить приближённо (с помощью первого дифференциала) значение функции в точке , если , , .

Первый дифференциал функции имеет вид .

Частные производные функции вычисляются по обычным правилам дифференцирования функции одной переменной, в предположении, что если производная берётся по аргументу (аргументу ), то другой аргумент (аргумент ) считается постоянным.

Решение.

а1) Находим частные производные первого порядка и функции

:

;

.

Тогда первый дифференциал функции имеет вид:

.

а2) Вторую частную производную (или кратко ) находим как первую частную производную по аргументу от функции :

.

Формула для приближённого вычисления значений функции в малой окрестности точки , в которой функция дифференцируема, имеет вид: , где , . Формула тем точнее, чем меньше значение .

б) Вычисляем значения частных производных , и значение функции в точке , где , :

, , .

Тогда, учитывая, что , , получим:

.

Ответ: а) , ; б) .

71 – 80. Найти локальные экстремумы функции .

Для нахождения локальных экстремумов дифференцируемой функции необходимо: 1) Найти область определения функции. 2) Найти первые частные производные и функции. 3) Решить систему уравнений (необходимое условие экстремума) и найти точки (с учётом возможных дополнительных ограничений на значения аргументов и ) возможного локального экстремума функции. 4) Найти вторые частные производные , , ; составить выражение и вычислить значения и в каждой точке возможного экстремума. 5) Сделать вывод о наличии экстремумов функции , используя достаточное условие экстремума: если , то в точке экстремума нет; если и , то в точке - локальный минимум; если и , то в точке - локальный максимум; если , то требуется дополнительное исследование точки (например, по определению). 6) Найти локальные экстремумы (экстремальные значения) функции.





Дата публикования: 2015-01-10; Прочитано: 207 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...