![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Критические точки
критическая точка функции это точка, в которой производная функции не существует или равна нулю.
Экстремум функции двух переменных
Пусть задана функция двух переменных z=z(x,y), (x,y) D. Точка M0(x0;y0) - внутренняя точка области D.
Если в D присутствует такая окрестность UM0 точки M0, что для всех точек
то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.
А если же для всех точек
то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.
Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).
Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.
В частности, точке В соответствует понятие глобального максимума:
Аналогично определяется и глобальный минимум:
Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.
Теорема 1.3 (необходимые условия экстремума).
Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0
D - точка локального экстремума.
Если в этой точке существуют z'x и z'y, то
Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом 0° к оси Ох и к оси Оу.
Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):
что и требовалось доказать.
Дата публикования: 2015-01-10; Прочитано: 390 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!