Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Неравенство Чебышева. Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа e



Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа e, не меньше, чем , т.е.

Пример.

Номинальное значение диаметра втулки равно 5 мм, а дисперсия, из-за погрешностей изготовления, не превосходит 0,01. Оценить вероятность того, что размер втулки будет отличаться от номинала не более чем на 0,5 мм.

Решение:

По неравенству Чебышева

Неравенство Чебышева дает только верхнюю границу вероятности данного отклонения. Выше этой границы вероятность не может быть ни при каком законе распределения. Например, если мы захотим выяснить, какова вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше, чем на 3 среднеквадратических отклонения, то неравенство Чебышева даст нам верхнюю границу этого значения 1/9 @ 0,111. В то же время, например для нормального распределения вероятность такого отклонения намного меньше - 0,0027 (правило трех сигм).

Теорема Чебышева.

Если - попарно независимые случайные величины, причем их дисперсии ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число e, вероятность выполнения неравенства

будет как угодно близка к единице при достаточно большом числе n. Иначе говоря

Таким образом, теорема Чебышева утверждает, что для достаточно большого числа независимых случайных величин, имеющих ограниченные дисперсии, почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.

Доказательство. Введем в рассмотрение новую случайную величину – среднее арифметическое случайных величин

Найдем математическое ожидание . Пользуясь свойствами математического ожидания, получим

Применяя к величине неравенство Чебышева, имеем

Или

(1)

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

Так как по условию дисперсии всех случайных величин ограничены постоянным числом С, то

Таким образом

Подставляя правую часть последнего неравенства в (1) (отчего оно может быть только усилено), получим

Отсюда, переходя к пределу при и учитывая, что вероятность не может превосходить единицы, получим доказательство:

.

В важном частном случае, когда случайные величины имеют одно и то же математическое ожидание (обозначим его a) формула, выражающая теорему Чебышева, принимает вид

Сущность теоремы Чебышева такова: хотя отдельные независимые случайные величины могут принимать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения, близкие к определенному

постоянному числу

или – в частном случае, к числу . Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

Пусть производится процесс измерения некоторой величины. Будем рассматривать результаты каждого измерения как случайные величины . Если результат каждого измерения не зависит от результатов остальных (т.е. величины попарно независимы), а случайные величины имеют одинаковое математическое ожидание и их дисперсии ограничены, то, применяя теорему Чебышева, получим, что при достаточно большом n среднее арифметическое результатов измерений сколь угодно мало отличается от истинного значения измеряемой величины (математического ожидания a).

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.





Дата публикования: 2015-01-09; Прочитано: 678 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...