Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Векторное произведение



Упорядоченная тройка некомпланарных векторов называется правоориентированной (правой), если после приложения к общему началу из конца третьего вектора кратчайший поворот от первого вектора ко второму виден против часовой стрелки. В противном случае упорядоченная тройка некомпланарных векторов называется левоориентированной (левой).

Определение: Векторным произведением вектора на вектор называется вектор , удовлетворяющий условиям:

1. где φ – угол между векторами и ;

2. вектор ортогонален вектору , вектор ортогонален вектору ;

3. упорядоченная тройка векторов является правой.

Если один из векторов нулевой, то векторное произведение есть нулевой вектор.

Векторное произведение вектора на вектор обозначается {либо }.

Теорема: Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения.

Теорема: Длина (модуль) векторного произведения двух векторов равняется площади параллелограмма, построенного на этих векторах как на сторонах.

Пример: Если – правый ортонормированный базис, то , , .

Пример: Если – левый ортонормированный базис, то , , .

Пример: Пусть, а ортогонален к . Тогда получается из вектора поворотом вокруг вектора на по часовой стрелке (если смотреть из конца вектора ).

Пример: Если дан вектор , то каждый вектор можно представить в виде суммы , где – ортогонален , а – коллинеарен . Легко видеть, что .

Действительно, можно заметить, что . Вектор компланарен векторам и , а потому и коллинеарны. Легко видеть (рис. 12), что они одинаково направлены.


Векторное произведение обладает следующими свойствами:

1. (антикоммутативность);

Действительно, из определения следует, что модуль векторного произведения не зависит от порядка сомножителей. Точно так же вектор коллинеарен вектору . Однако, переставляя сомножители, мы должны изменить направление произведения, чтобы было выполнено условие 3) определения. Действительно, если , , - правая тройка, то , , - левая, а , , - снова правая тройка.

2. ;

Если φ - угол между векторами и , то . Векторы, стоящие в обеих частях доказываемого равенства, лежат на прямой, перпендикулярной и . При λ > 0 и вектор и вектор направлены так же, как . Если λ < 0, то кратчайший поворот от к производится навстречу кратчайшему повороту от к . Поэтому и противоположно направлены. Очевидно, что противоположно направлены также и векторы и . Таким образом, при λ ≠ 0 векторы и направлены всегда одинаково, и равенство доказано. При λ = 0 равенство очевидно.

3. ;

Если , то доказываемое очевидно. Если , то разложим и в суммы и , где и ортогональны , а и коллинеарны . Поскольку , и вектор ортогонален , а коллинеарен , нам достаточно доказать равенство и (в силу свойства 2) даже равенство , где . Длина вектора равна 1. Выше, в примере, мы видели, что в этом случае умножение на сводится к повороту (ортогонального к ) первого сомножителя на угол 90°. Но при повороте параллелограмм, построенный на и , поворачивается целиком вместе с диагональю. Тем самым равенство доказано.

4. .

Пусть в некотором базисе заданы векторы и тогда

или

Справедливость теоремы следует из предыдущих формул при учете примеров в начале раздела. Чтобы избежать постоянных замечаний об ориентации базиса, мы будем считать, что базис выбирается всегда правый.

Векторное произведение используется в основном для решения двух задач:

1. Нахождения вектора перпендикулярного плоскости, в которой расположены два заданных вектора.

2. Вычисление площади S параллелограмма, построенного на векторах и , как на сторонах. В ортонормированном базисе

В планиметрии векторное произведение не определено. Но ничто не мешает считать, что изучаемая плоскость помещена в пространство и третий базисный вектор выбран единичным и перпендикулярным плоскости. Тогда векторное произведение имеет одну ненулевую компоненту, а именно третью, и площадь параллелограмма в ортонормированном базисе на плоскости выражается формулой

.

§ 1.6. Комплексные числа

Комплексным числом называется выражение вида z = a + bi, где a и b – действительные числа, мнимая единица. Число а называется действительной частью комплексного числа z и обозначается a = Rez, число b – мнимой частью z: b = Imz.

Два комплексных числа z1 = a1 + b1i и z2 = a2 + b2i равны, если a1 = a2 и b1 = b2.

Комплексные числа z = a + bi и z = a – bi называются сопряженными.





Дата публикования: 2014-12-30; Прочитано: 250 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...