Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Регрессионные модели с линейной структурой



Полиномиальная регрессия. Распространенной “нелинейной” моделью является модель полиномиальной регрессии. Термин нелинейная заключен в кавычки, поскольку эта модель линейна по своей природе. Например, предположим, что вы измеряете в обучающем эксперименте связь физиологического возбуждения объектов и их производительности в задаче слежения за целями. На основании хорошо известного закона Йеркса-Додсона, можно ожидать нелинейной зависимости между уровнем возбуждения и производительностью. Это предположение можно выразить следующим уравнением регрессии:

Производительность = a + b1*Возбуждение + b2*Возбуждение2

В этом уравнении a представляет свободный член, а b1 и b2 коэффициенты регрессии. В сущности, модель по-прежнему линейна, за исключением того, что при ее оценивании нам придется возводить наблюдаемый уровень возбуждения в квадрат. Для оценивания коэффициентов регрессии этой модели можно использовать фиксированное нелинейное оценивание. Такие модели, где мы составляем линейное уравнение из некоторых преобразований независимых переменных, относятся к моделям нелинейным по переменным.

Модели, нелинейные по параметрам. Для сравнения с предыдущим примером рассмотрим зависимость между возрастом человека (переменная x) и его скоростью роста (переменная y). Очевидно, что соотношение между этими двумя переменными на первом году человеческой жизни (когда происходит наибольший рост) сильно отличается от соотношения во взрослом возрасте (когда человек почти не растет). Поэтому, эту зависимость лучше представить в виде какой-нибудь экспоненциальной функции с отрицательным показателем степени:

Рост = exp(-b1*Возраст)

Если вы построите на графике оценку для коэффициента регрессии, то вы получите кривую следующего вида:

Отметим, что эта модель по своей природе больше не является линейной, т.е. выражение, написанное сверху, не представимо в виде простой регрессионной модели с некоторыми преобразованиями независимых переменных. Такие модели называются нелинейными по параметрам.

Сведение нелинейных моделей к линейным. В общем случае, всегда, когда регрессионная модель может быть сведена к линейной модели, этому способу отдается предпочтение (при оценивании соответствующей модели). Модель линейной множественной регрессии наиболее просто понимаема с точки зрения математики и, с практической точки зрения, наиболее проста для толкования. Поэтому, возвращаясь к простой экспоненциальной регрессионной модели Скорости роста как функции Возраста, описанной раньше, мы можем преобразовать это нелинейное уравнение в линейное, прологарифмировав обе части уравнения, получив:





Дата публикования: 2014-11-18; Прочитано: 903 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...