![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Знайдемо границю подвійної інтегральної суми при ,
. Якщо вона існує, позначимо її:
(1.4)
Повернемось до інтегральної суми . Позначимо найбільшу з елементарних площ
,
.
Якщо інтегральна сума при має границю,
(1.5)
яка не залежить ні від способу розбиття області D на частини , ні від вибору точок
,
, в цих частинах, то ця границя називається подвійним інтегралом по області
і позначається
(1.6)
Якщо існує границя інтегральної суми функції , то функція
називається інтегровною в області D; D – область інтегрування; х, у – змінні інтегрування;
(або
) – елемент площі.
Теорема 1.1. (достатні умови інтегровності функції).
Якщо функція неперервна в замкненій квадровній області D, то вона інтегровна в цій області. Таким чином, існує границя інтегральної суми, формула (1.5), яка не залежить ні від способу розбиття області D на частини
, ні від вибору проміжних точок
в цих частинах.
Обидві границі, формули (1.4) і (1.5), відповідають точному значенню шуканої величини F. Отже справедлива рівність:
Дата публикования: 2014-11-18; Прочитано: 417 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!