![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
За другим законом Кирхгофа t ≥ 0 маємо:
.
Враховуючи те, що
, одержуємо диференціальне рівняння другого порядку для вільної складової напруги
.
Характеристичне рівняння при цьому має вигляд:

Характер електромагнітних процесів у контурі залежить від співвідношення параметрів R, L, С, що входять у вираз для коренів характеристичного рівняння
.
Залежно від знака підкореневого виразу корені можуть бути дійсними або комплексно- -спряжені. Вони визначають характер вільних складових перехідних струмів і напруг.
Введемо позначення:
– коефіцієнт загасання вільної складової;

тоді
.
В залежності від співвідношення між величинами R, L та С отримаємо три варіанти коренів характеристичного рівняння:
а) при
корені будуть дійсними та різними, а перехідний процес – аперіодичним;
б) при
одержимо два дійсних, однакових кореня
, що відповідає граничному аперіодичному режиму. Параметри кола, за яких відбувається цей режим, називаються критичними i між ними існує така залежність:
;
в) при
корені p вийдуть комплексно-спряженими
, 
а перехідний процес матиме коливальний характер, в якому d характеризує згасання амплітуди коливань, а
– їх частоту.
Дата публикования: 2014-11-18; Прочитано: 1081 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
