Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Равномерная сходимость функциональной последовательности, ряда. Признак Вейерштрасса



Пусть задана последовательность функций , определенных на множестве .

Определение. поточечно сходится к на , если , т.е. .

Пример. Пусть , . Тогда при имеем: . При и . Таким образом, последовательность поточечно сходится к функции .

Если рассматривать функциональный ряд , составленный из определенных на множестве функций, то под его поточечной сходимостью понимается поточечная сходимость последовательности его частичных сумм.

Выше мы видим, что поточечный предел последовательности непрерывных функций может оказаться разрывной функцией.

Чтобы избежать подобных неприятностей, рассмотрим более сильное понятие равномерной сходимости.

Определение. Последовательность равномерно сходится к при на множестве , если . Это обозначается так: на при .

Равномерная сходимость функционального ряда – это равномерная сходимость последовательности его частичных сумм к сумме ряда на . Это равносильно тому, что на при , т.е. тому, что на .

Теорема. (Критерий Коши равномерной сходимости последовательности ). на множестве .





Дата публикования: 2014-11-19; Прочитано: 399 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...