![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|

Следствие 1. Постоянный множитель можно выносить за знак производной:

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.
Например, для трёх множителей имеем:

Пример: Найти производную функции

Решение. Применяя правила (5) и (8) и формулу (4) дифференцирования степенной функции получим

Пример. Найти производную функции

Решение. Применим правило (7) дифференцирования произведения, а затем найдём производные сомножителей так же, как в примере 4. Тогда получим

Пример. Найти производную функции

Решение. Применим правило (10) дифференцирования частного:

Затем, так же как и выше, вычислим производные в числителе. Имеем

Дата публикования: 2014-11-04; Прочитано: 279 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
