![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Найти координаты центра и радиус окружности, если ее уравнение задано в виде:
2x2 + 2y2 – 8x + 5y – 4 = 0.
Для нахождения координат центра и радиуса окружности данное уравнение необходимо привести к виду, указанному выше в п.9. Для этого выделим полные квадраты:
x2 + y2 – 4x + 2,5y – 2 = 0
x2 – 4x + 4 –4 + y2 + 2,5y + 25/16 – 25/16 – 2 = 0
(x – 2)2 + (y + 5/4)2 – 25/16 – 6 = 0
(x – 2)2 + (y + 5/4)2 = 121/16
Отсюда находим О(2; -5/4); R = 11/4.
7.1.2 ЭЛЛИПС
Эллипсом называется линия, заданная уравнением .
Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.
М
r1
r2
F1 O F2 х
F1, F2 – фокусы. F1 = (c; 0); F2(-c; 0)
с – половина расстояния между фокусами;
a – большая полуось;
b – малая полуось.
Теорема Фокусное расстояние и полуоси эллипса связаны соотношением:
a2 = b2 + c2.
Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом.
Е = с/a.
Т.к. с < a, то е < 1.
С эллипсом связаны две прямые, называемые директрисами. Их уравнения:
x = a/e; x = -a/e.
Дата публикования: 2014-11-03; Прочитано: 1634 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!