![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Рассмотрим множество
всех
(строк из
элементов) действительных чисел
. Введем на этом множестве умножение числа на
и сложение
так:

Ниже
будем называть векторами, и обозначать латинскими буквами
возможно с нижними индексами. Исключение составит нулевой вектор
. Числа из
будем обозначать греческими буквами 
Множество
, вместе со сложением векторов и умножение числа на вектор образуют арифметическое линейное пространство или
- мерным векторным пространством.
Непосредственно из определения следуют такие свойства сложения векторов в
:

Умножение числа на вектор обладает следующими свойствами:

Из этих свойств следует, что в сумме нескольких векторов не обязательно расставлять скобки (свойство 1) и она не зависит от порядка следования слагаемых (свойство 4). В сумме векторов можно приводить подобные члены, т.е.
, а также в равенстве двух сумм переносить вектор из одной части в другую с противоположным знаком.
Справедливы также следующие два утверждения:
(1)
.
Действительно,
.
(2)
.
Действительно,
.
Вектор вида
называется линейной комбинацией векторов
(с коэффициентами
). Говорят, что система векторов
является линейно независимой, если для любых чисел
равенство
влечет, что
. В противном случае система векторов
называться линейно зависимой. Равносильно, система векторов
линейно зависима, если найдутся числа
, не все из которых равны
, но
. Равенство
можно выразить словами: линейная комбинация векторов
с коэффициентами
равна нулевому вектору.
ЛЕММА 1 (о линейно зависимых системах). Система векторов линейно зависима тогда и только тогда, когда один из них линейно выражается через предыдущие (тем более, через оставшиеся).
ДОКАЗАТЕЛЬСТВО. Пусть
, но не все числа
равны
, а
- наибольший из индексов таких, что
.
Тогда
, откуда

Обратно, пусть
.
Тогда
и видно, что в этой линейной комбинации векторов
, которая равна нулевому вектору, коэффициент при
не равен нулю. □
Система векторов
называется системой порождающих (или образующих) линейного пространства
, если любой вектор из
равен подходящей их линейной комбинации.
ЛЕММА 2 (о порождающих). Если система порождающих линейно зависима, то из неё можно удалить подходящий вектор такой, что оставшаяся система векторов также будет системой порождающих.
ДОКАЗАТЕЛЬСТВО. Если система порождающих
линейно зависима, то по лемме 1 в ней найдётся некоторый вектор
, который выражается через
:
(1)
Так как для всякого
найдутся числа
такие, что
. (2)
Подставляя в равенство (2) вместо
его выражение из (1), раскрывая скобки и приводя подобные слагаемые, убедимся в справедливости утверждения леммы. □
Линейно независимая система порождающих называется базисом
.
Нетрудно понять, что следующая система векторов будет базисом в
:

Действительно, она линейно независима, т. к. никакой вектор в ней не может быть выражен через предыдущие. С другой стороны, вектор
имеет вид
и тогда
.
Аналогично, для любого
в
существует базис из
векторов, называемых единичными:

ТЕОРЕМА (о базисах). Любые два базиса линейного пространства состоят из одного итого же числа векторов.
ДОКАЗАТЕЛЬСТВО.Пусть даны два базиса линейного пространства
и
, причем
. Рассмотрим систему
.
Она линейно зависима по лемме 1, т.к.
выражается через
, но разумеется также является системой порождающих. По лемме 2 из нее можно вычеркнуть некоторый вектор, выражающийся через предыдущие, получив систему порождающих
(3)
Рассмотрим систему порождающих
(4)
которая линейно зависима, т.к.
выражается через систему (3). По лемме 2 из нее можно вычеркнуть некоторый вектор, линейно выражающийся через предыдущие, получив систему порождающих

При этом вектор
(и
) не будет вычеркнут, т.к. в системе
никакой вектор не выражается через предыдущие. Затем, рассматриваем систему порождающих

и продолжаем аналогичную процедуру. Т.к.
, то в конце концов получим систему порождающих
(5)
причем
. Следовательно, вектор
линейно выражается через систему векторов (5), что противоречит линейной независимости
□
СЛЕДСТВИЕ 1. В пространстве
любые два базиса состоят из n векторов. □
СЛЕДСТВИЕ2. Любая линейно независимая система векторов дополняема до базиса.
ДОКАЗАТЕЛЬСТВО. Припишем к линейно независимой системе векторов
справа векторы
, составляющие базис, получив систему
. Теперь начнем из этой системы вычёркивать, пока это возможно, векторы, линейно выражающиеся через предыдущие. По лемме 1 векторы вида
вычеркнуты быть не могут, а по лемме 2 оставшаяся система будет и системой порождающих. □
СЛЕДСТВИЕ3. Каждая система порождающих содержит базис. Доказательство аналогично предыдущему. □
СЛЕДСТВИЕ4. В
мерном линейном пространстве любые
векторов образуют линейно зависимую систему.
Доказательство следует из следствия 1 и теоремы о базисах. □
Линейно независимая система векторов называется максимальной, если при добавлении к ней еще одного вектора она становится линейно зависимой. Поэтому базис можно определить как максимальную линейно независимую систему векторов.
Дата публикования: 2014-11-04; Прочитано: 664 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
