Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Изощренный, но не злонамеренный 24 страница



Более того, точно так же, как игровой автомат будет также генерировать широкое разнообразие невыигрышных результатов, в других регионах изначального пространства будут происходить также и другие виды флуктуаций инфлатона. В большинстве случаев флуктуации не будут давать правильную величину или будут существенно неоднородными для возникновения инфляционного расширения. (Даже в области, которая не более 10–26 сантиметра в поперечнике, величина поля может дико изменяться). Но все, что для нас имеет значение, так это то, что был один кусочек, который выдал пространственно гладкий инфляционный взрыв, который обеспечил первое звено в низкоэнтропийной цепочке, в конце концов приведшей к нашему привычному космосу. Поскольку мы видим только нашу большую вселенную, нам нужно, чтобы космический игровой автомат выплатил выигрыш только раз.[5]

Поскольку мы привели вселенную назад к статистической флуктуации из первичного хаоса, это объяснение стрелы времени соединяется определенным образом с оригинальным предположением Больцмана. Вспомним из Главы 6, что Больцман предположил, что все, что мы сейчас видим, возникло из редкой, но так часто ожидаемой флуктуации из полного беспорядка. Проблема с исходной формулировкой Больцмана, однако, заключалась в том, что невозможно было объяснить, почему случайная флуктуация оказалась так далеко за бортом хаоса и произвела вселенную в гигантской степени более упорядоченную, чем это было необходимо, чтобы даже поддержать жизнь, как мы ее знаем. Почему такая обширная вселенная имеет миллиарды и миллиарды галактик, каждая из которых имеет миллиарды и миллиарды звезд, когда она могла бы иметь решительно ограниченный уголок, имея, скажем, всего несколько галактик или даже одну единственную?

Со статистической точки зрения намного более скромная флуктуация, которая произвела бы некоторый порядок, но не такой значительный, как мы сейчас видим, была бы намного более вероятной. Более того, поскольку средняя энтропия возрастает, рассуждения Больцмана показывают, что было бы еще намного более вероятным, что все, что мы сегодня видим, просто появилось сию минуту как редкий статистический выброс к низкой энтропии. Повторим аргумент: чем дальше назад произошла флуктуация, тем более низкой энтропии она должна была бы достигнуть (энтропия начинает расти после любого падения к низкой энтропии, как на Рис. 6.4, так если флуктуация произошла вчера, одна должна была упасть к вчерашней низкой энтропии, а если она произошла миллиард лет назад, она должна была упасть именно к низкой энтропии той эры). Поэтому чем дальше назад во времени, тем более драматической и невероятной должна быть требуемая флуктуация. Но если мы принимаем это заключение, мы не можем доверять своей памяти, записям или даже законам физики, которые лежат в основе самой дискуссии – полностью неприемлемая позиция.

Потрясающее преимущество инфляционного возрождения идеи Больцмана заключаются в том, что малая флуктуация сразу – скромный прыжок к подходящим условиям в мельчайшем кусочке пространства – неизбежно дает гигантскую и упорядоченную вселенную, которую мы осознаем. Раз уж инфляционное расширение началось, маленький кусочек будет неумолимо растянут до масштабов, по меньшей мере таких же больших, как вселенная, которую мы в настоящее время видим, а потому нет загадки в том, почему вселенная не ограничилась уголком; нет загадки, почему вселенная столь обширна и населена огромным числом галактик. От начала своего действия инфляция дала вселенной поразительные условия сделки. Прыжок к низкой энтропии внутри мельчайшего кусочка пространства был использован для инфляционного расширения в широчайшие пределы космоса. И, что самое важное, инфляционное растяжение не просто дает произвольную старую большую вселенную. Оно дает нашу большую вселенную – инфляция объясняет форму пространства, она объясняет крупномасштабную однородность, и она даже объясняет "мелкомасштабные" неоднородности, такие как галактики, и температурные вариации фонового излучения. Инфляция упаковывает все богатство объяснительной и предсказательной мощи в отдельную малую флуктуацию к низкой энтропии.

Итак, Больцман был почти прав. Все, что мы видим, могло произойти от случайной флуктуации от высоко разупорядоченного состояния первичного хаоса. В этом объяснении его идеи, однако, мы можем верить нашим записям и мы можем верить нашей памяти: флуктуация не произошла прямо сейчас. Прошлое реально происходило. Наши записи записали вещи, которые имели место. Инфляционное расширение увеличивает микроскопическую крупинку порядка в ранней вселенной, – оно "заводит" вселенную на гигантское расширение с минимальной гравитационной энтропией, – так что 14 миллиардов лет последующего раскручивания, последующего собирания в галактики, звезды, планеты, не представляет загадки.

Фактически этот подход говорит нам даже немного больше. Точно так же, как возможно сорвать куш на нескольких игровых автоматах в подвале казино Белладжио (Лас-Вегас), в изначальном состоянии высокой энтропии и полного хаоса нет причин, по которым необходимые для инфляционного расширения условия могли бы появиться только в отдельном пространственном кусочке. Напротив, как предположил Андрей Линде, там могли бы быть многие кусочки, разбросанные тут и там, которые подверглись разглаживающему пространство инфляционному расширению. Если это было так, наша вселенная становится лишь одной среди многих вселенных, прораставших – и, вероятно, продолжающих прорастать, – когда случайные флуктуации делают условия подходящими для инфляционного взрыва, как проиллюстрировано на Рис.11.2. Так как другие вселенные, вероятно, всегда будут отделены от нашей, тяжело себе представить, как мы когда-либо сможем установить, является ли эта картина "мультивселенной" правильной. Однако, как концептуальная схема, она является как богатой, так и привлекательной. Среди других вещей она предлагает возможный сдвиг в нашем понимании космологии: В Главе 10 я описал инфляцию как "передовой рубеж" стандартной теории Большого взрыва, в котором Взрыв идентифицировался с мимолетным быстрым расширением. Но если мы думаем об инфляционном прорастании каждой новой вселенной на Рис 11.2 как о ее собственном Взрыве, тогда сама инфляция лучше всего выглядит как всеобъемлющая космологическая структура, в рамках которой эволюции вроде Большого взрыва происходят пузырь за пузырем. Таким образом, вместо того, чтобы включить инфляцию в стандартную теорию Большого взрыва, в этом подходе стандартный Большой взрыв включается в инфляцию.

Рис 11.2 Инфляция может возникать постоянно, выращивая новые вселенные из старых.

Инфляция и яйцо

Так почему яйцо расплескивается, но не собирается назад? Откуда происходит стрела времени, которую мы все ощущаем? В этом предложенный подход нас поддерживает. Через случайные, но каждым так часто ожидаемые флуктуации из обыкновенного изначального состояния с высокой энтропией мельчайшие кусочки пространства весом двадцать фунтов достигают условий, которые приводят к короткому взрыву инфляционного расширения. Жуткое, направленное наружу раздувание приводит к растянутому и экстремально гладкому пространству гигантских размеров, и, когда взрыв подходит к концу, поле инфлатона освобождается от своей гигантским образом увеличившейся энергии, заполняя пространство почти однородно материей и излучением. Когда инфляционная отталкивательная гравитация уменьшается, обычная притягивательная гравитация становится доминирующей. И, как мы видели, притягивательная гравитация использует микроскопические неоднородности, вызванные квантовыми дрожаниями, чтобы заставить материю собираться в комки, формируя галактики и звезды и, в конечном счете, приводя к образованию Солнца, Земли и остальной Солнечной системы, а также других структур в нашей наблюдаемой вселенной. (Как обсуждалось, примерно через 7 миллиардов лет после Большого Взрыва отталкивательная гравитация еще раз стала доминирующей, но это существенно только на самых больших космических масштабах и не сказывается непосредственно на более мелких сущностях вроде индивидуальных галактик или нашей Солнечной системы, где по-прежнему царствует ординарная притягивающая гравитация). Солнечная относительно низкоэнтропийная энергия используется низкоэнтропийными растительными и животными формами жизни на Земле, чтобы производить еще более низкоэнтропийные формы жизни, медленно увеличивая полную энтропию через тепло и отходы. В конечном счете эта цепочка произвела курицу, которая произвела яйцо – и мы знаем конец истории: яйцо скатилось с вашего кухонного стола и расплескалось по полу как часть неотвратимого движения вселенной к более высокой энтропии. Такова низкоэнтропийная, высоко упорядоченная, однородно гладкая природа пространственной ткани, произведенной инфляционным растягиванием, что является аналогом обладания всеми страницами Войны и Мира в их правильном числовом расположении; это тот ранее установленный порядок, – отсутствие больших неровностей и деформаций или чудовищных черных дыр, – который заряжает вселенную на постепенную эволюцию к высокой энтропии и потому обеспечивает стрелу времени, которую мы ощущаем. На нашем сегодняшнем уровне понимания это наиболее полное объяснение стрелы времени, которое может быть дано.

Ложка дегтя в бочке меда?

Для меня эта история инфляционной космологии и стрелы времени является любимой. Из дикой и энергичной реальности изначального хаоса возникла ультрамикроскопическая флуктуация однородного поля инфлатона весом намного меньше, чем лимит ручной клади. Это инициировало инфляционное расширение, которое задало направление стреле времени, а остальное и есть история.

Но, говоря об этой истории, мы делаем стержневое допущение, которое все еще не подтверждено. Чтобы определить величину вероятности того, что инфляция могла начаться, мы определили характеристики предынфляционной реальности, без которых инфляционное расширение не обязано возникнуть. Особая реальность, которую мы себе представляли, – дикая, хаотическая, энергичная – звучит разумно, но выражение этого интуитивного описания с математической точностью оказывается затруднительным. Более того, это только гипотеза. Основым моментом является то, что мы не знаем, какие условия были предпочтительны в предлагаемой предынфляционной реальности, в размытом пятне на Рис. 10.3, а без этой информации мы не в состоянии сделать убедительную оценку вероятности инициации инфляции; любое вычисление вероятности чувствительно зависит от сделанных нами допущений.[6]

С этой дырой в нашем понимании самое осмысленное обобщение заключается в том, что инфляция предлагает мощную объяснительную схему, которая связывает вместе кажущиеся несопоставимыми проблемы – проблему горизонта, проблему плоскостности, проблему первоначальной структуры, проблему низкой энтропии ранней вселенной – и предлагает отдельное решение, которое адресуется ко всем этим проблемам. Это кажется правильным. Но, чтобы перейти на следующий этап, нам нужна теория, которая может справиться с экстремальными характеристиками условий размытого пятна, – экстремальными по теплу и колоссальной плотности, – тогда мы сохраним шанс получения острого, однозначного проникновения в самые ранние моменты космоса.

Как мы узнаем в следующей главе, это требует теории, которая может преодолеть, возможно, величайшую преграду теоретической физики, которая стоит перед нами на протяжении последних восьмидесяти лет: фундаментальную трещину между ОТО и квантовой механикой. Многие исследователи уверены, что относительно новый подход, именуемый теорией суперструн, может достигнуть этого, но если теория суперструн верна, ткань космоса оказывается намного более странной, чем кто-либо когда-либо себе представлял.

IV Первоисточники и объединение

12 Мир на струне

ТКАНЬ В СООТВЕТСТВИИ С ТЕОРИЕЙ СТРУН

Представьте вселенную, в которой чтобы понять что-либо, вам необходимо понять все. Вселенная, в которой чтобы сказать что-нибудь о том, почему планета вращается вокруг звезды, о том, почему бейсбольный мяч летит по определенной траектории, о том, как работает магнит или батарея, о том, как действует свет или гравитация, – вселенная, в которой, чтобы сказать что-нибудь о чем-нибудь, – вам было бы необходимо открыть самые фундаментальные законы и определить, как они действуют на тончайшие составляющие материи. К счастью, такая вселенная не является нашей вселенной.

Если бы это было, тяжело было бы представить, как наука вообще могла бы двигать любой прогресс. В течение столетий причина, по которой мы были в состоянии осуществлять движение вперед, была в том, что мы могли работать по частям; мы были в состоянии распутывать тайны шаг за шагом, с каждым новым открытием продвигаясь на йоту глубже, чем раньше. Ньютону не нужно было знать про атомы, чтобы сделать великий шаг в понимании движения и гравитации. Максвеллу не нужно было знать про электроны и другие заряженные частицы, чтобы разработать мощную теорию электромагнетизма. Эйнштейну не нужно было обращаться к изначальному воплощению пространства и времени, чтобы сформулировать теорию о том, как они искривляются с помощью гравитационных сил. Вместо этого, каждый из этих открывателей, точно так же, как многие другие, которые подвели основу под нашу современную концепцию космоса, действовали в рамках ограниченного контекста, который без смущения оставлял без ответа массу основополагающих вопросов. Каждое открытие было в состоянии внести свой собственный кусочек в головоломку, даже если никто не знал, – и мы все еще не знаем, – какая великая синтезированная картина заключает в себе все кусочки головоломки.

Тесно связанное с этим наблюдение заключается в том, что хотя сегодня наука резко отличается от науки даже пятьдесят лет назад, было бы неоправданным упрощением обобщать научный прогресс в терминах новых теорий, низвергнувших своих предшественниц. Более корректное описание заключается в том, что каждая новая теория усовершенствует свою предшественницу, обеспечивая более точную и более далеко простирающуюся схему. Ньютоновская теория гравитации была заменена ОТО Эйнштейна, но было бы наивным говорить, что ньютоновская теория не верна.

В области объектов, которые нигде не двигаются почти так же быстро, как свет, и нигде не производят гравитационных полей, почти таких же сильных, как у черных дыр, теория Ньютона фантастически точна. Это еще не говорит о том, что теория Эйнштейна является второстепенным вариантом ньютоновской; в ходе усовершенствования ньютоновского подхода к гравитации Эйнштейн выработал целую новую концептуальную схему, одну из тех, что радикально изменяет наши представления о пространстве и времени. Но сила ньютоновского открытия в рамках области, для которой оно предназначено (движение планет, типичные земные движения и так далее), неоспорима.

Мы представляем каждую новую теорию, как подводящую нас ближе к трудной цели достижения истины, но имеется ли конечная теория, – теория, которая не может быть дальше уточнена, поскольку она полностью раскрывает работу вселенной на самом глубоком возможном уровне, – на этот вопрос никто не может ответить. Даже при этих условиях картина, вырисовывающаяся в течение последних трехсот лет открытий, дает дразнящие свидетельства, что такая теория может быть разработана. Вообще говоря, каждый новый прорыв собирает широкий спектр физических явлений под несколькими теоретическими зонтиками. Открытия Ньютона показали, что силы, управляющие планетарным движением, являются теми же силами, которые управляют движением падающих объектов здесь на Земле. Открытия Максвелла показали, что электричество и магнетизм являются двумя сторонами одной монеты. Открытия Эйнштейна показали, что пространство и время так же неразделимы, как прикосновение и золото Мидаса. Открытия поколения физиков в начале двадцатого века установили, что мириады загадок микрофизики могут быть точно объяснены с использованием квантовой механики. Относительно недавние открытия Глэшоу, Салама и Вайнберга показали, что электромагнетизм и слабое ядерное взаимодействие являются двумя проявлениями единого взаимодействия – электрослабого взаимодействия, – и имеются даже пробные, косвенные доказательства, что сильное ядерное взаимодействие может быть присоединено к электрослабому в еще более великом синтезе.[1] Собирая все это вместе, мы видим картину, которая движется от сложности к простоте, картину, которая движется от разделения к единству. Направления объяснений кажутся сходящимися в мощную схему, которую еще предстоит открыть и которая объединит все силы природы и всю материю в рамках одной теории, способной описать все физические явления.

Альберт Эйнштейн, который более трех десятилетий пытался объединить электромагнетизм и ОТО в одну теорию, справедливо ассоциируется с началом современных поисков единой теории. Долгий период в течение этих десятилетий он был единственным исследователем такой единой теории, и его страстный, хотя и одинокий поход отделил его от главного потока физического сообщества. Однако, в течение последних двадцати лет произошло драматическое возрождение похода к единой теории; одинокая мечта Эйнштейна стала движущей силой для целого поколения физиков. Но из-за открытий, произошедших со времен Эйнштейна, сместился фокус. Даже если мы еще не имеем успешной теории, объединяющей сильное ядерное и электрослабое возаимодействие, все эти три вида сил (электромагнитные, слабые, сильные) описываются на одном едином языке, основанном на квантовой механике. Но ОТО, наша наиболее совершенная теория четвертой силы, стоит в стороне от этой схемы. ОТО является классической теорией: она не включает никакие вероятностные концепции квантовой теории. Главная цель современной программы унификации заключается, следовательно, в объединении ОТО и квантовой механики и в описании всех четырех сил в рамках одной и той же квантовомеханической схемы. Это оказалось одной из самых трудных проблем, с которыми когда-либо сталкивалась теоретическая физика.

Давайте посмотрим, почему.

Квантовые дрожания и пустое пространство

Если мне надо выделить одно наиболее памятное свойство квантовой механики, я выбираю принцип неопределенности. Вероятности и волновые функции определенно обеспечивают радикально новую схему, но именно принцип неопределенности заключает в себе разрыв с классической физикой. Вспомним, что в семнадцатом и восемнадцатом веках ученые были уверены, что полное описание физической реальности заключается в спецификации положений и скоростей каждой составляющей материи, заполняющей космос. А с появлением концепции поля в девятнадцатом веке и ее последующим применением к электромагнитным и гравитационным силам этот взгляд был дополнен включением величины каждого поля – то есть, напряженности каждого поля, – и темпа изменения величины каждого поля в каждом месте пространства. Но к 1930м принцип неопределенности демонтировал эту концепцию реальности, показав, что вы никогда не можете знать сразу положение и скорость частицы; вы никогда не можете знать сразу величину поля в данном месте пространства и то, как быстро величина поля изменяется. Квантовая неопределенность запрещает это.

Как мы обсуждали в последней главе, эта квантовая неопределенность обеспечивает, что микромир является турбулентной и дрожащей областью. Ранее мы обращали внимание на индуцированные неопределенностью квантовые дрожания поля инфлатона, но квантовая неопределенность применима ко всем полям. Электромагнитное поле, поля сильного и слабого ядерных взаимодействий и гравитационное поле все подвергаются бешеным квантовым скачкам-дрожаниям на микроскопическом масштабе. Фактически, эти дрожания полей существуют даже в пространстве, которое вы обычно воспринимаете как пустое, в пространстве, которое кажется не содержащим ни материи, ни полей. Это идея критической важности, но если вы не сталкивались с ней ранее, она, естественно, будет загадочной. Если регион пространства ничего не содержит – если это вакуум – то не означает ли это, что там нечему дрожать? Ну, мы уже изучили, что концепция пустоты тонкая. Просто подумайте об океане Хиггса, который, как утверждает современная теория, пронизывает пустое пространство. Квантовые дрожания я теперь обозначаю как служащие только для того, чтобы сделать понятие "ничто" еще более тонким. Вот, что я имею в виду.

В предквантовой (и пред-Хиггсовой) физике мы объявляли регион пространства полностью пустым, если он не содержал частиц и величина каждого поля была однородно нулевой.*

(*) "Для простоты изложения мы будем рассматривать только поля, которые достигают своей наименьшей энергии, когда их величина равна нулю. Обсуждение других полей – полей Хиггса – идентично, за исключением того, что поля флуктуируют вокруг ненулевой величины поля с минимальной энергией. Если вы хотите сказать, что регион пространства пуст, только если там не присутствует материя и все поля отсутствуют, а не только имеют величину нуль, смотрите секцию комментариев.[2]"

Теперь подумаем об этом классическом определении пустоты в свете квантового принципа неопределенности. Если поле имело и сохраняло исчезающе малую величину, мы будем знать его величину – нуль – а также темп изменения его величины – тоже нуль. Но в соответствии с принципом неопределенности невозможно, чтобы оба эти свойства были определены. Вместо этого, если поле имеет определенную величину в некоторый момент, нуль в нашем случае, принцип неопределенности говорит нам, что темп его изменения полностью случаен. А случайный темп изменения означает, что в следующие моменты величина поля будет хаотически дергаться вверх и вниз, даже в месте, которое мы обычно полагаем полностью пустым пространством. Так что интуитивное понятие пустоты как места, в котором все поля имеют и сохраняют нулевую величину, несовместимо с квантовой механикой. Величина поля может скакать вокруг величины нуль, но она не может быть однородно равной нулю во всей области более чем на мгновение.[3] На техническом языке физики говорят, что поля подвержены вакуумным флуктуациям.

Хаотичная природа флуктуаций вакуумного поля подразумевает, что во всех регионах, за исключением самых микроскопических, имеется так же много скачков "вверх", как и "вниз", а потому они усредняются к нулю, почти как мраморная поверхность выглядит совершенно гладкой для невооруженного глаза, даже если электронный микроскоп обнаруживает, что она зазубренная на микроскопических масштабах. Тем не менее, даже если мы не можем увидеть это непосредственно, более чем полстолетия назад реальность дрожаний квантового поля даже в пустом пространстве была окончательно установлена через простое, но глубокое открытие.

В 1948 датский физик Хендрик Казимир вычислил, как вакуумные флуктуации электромагнитного поля могут быть экспериментально обнаружены. Квантовая теория говорит, что дрожания электромагнитного поля в пустом пространстве будут иметь различную форму, как проиллюстрировано на Рис. 12.1а. Прозрение Казимира заключалось в осознании того, что, разместив две обычные металлические пластины в пустой в иных отношениях области, как на Рис. 12b, можно индуцировать тонкую модификацию этих вакуумных дрожаний поля. А именно, квантовые уравнения показывают, что в области между пластинами не будет нескольких флуктуаций (допустимы только те флуктуации электромагнитного поля, чьи величины исчезают в местоположении каждой пластины). Казимир проанализировал следствия такого ограничения в дрожаниях поля и нашел нечто экстраординарное.

(а) (b)

Рис 12.1 (а) Вакуумные флуктуации электромагнитного поля, (b) Вакуумные флуктуации между двумя металлическими пластинами и они же вне пластин.

Почти как уменьшение количества воздуха в области создает дисбаланс давлений (например, на большой высоте вы можете почувствовать разрежение воздуха, оказывающее меньшее давление вне ваших ушных раковин), уменьшение квантовых дрожаний поля между пластинами также дает дисбаланс давления: квантовые дрожания поля между пластинами становятся чуть-чуть слабее, чем вне пластин, и этот дисбаланс двигает пластины друг к другу.

Подумайте о том, насколько это совершенно странно. Вы помещаете две пластины, обыкновенные, не заряженные металлические пластины в пустую область пространства, одну лицом к другой. Когда их масса мала, гравитационное притяжение между ними настолько мало, что может быть полностью проигнорировано. Поскольку нет ничего другого вокруг, вы действительно придете к заключению, что пластины останутся неподвижными. Но расчеты Казимира предсказали, что произойдет не это. Он пришел к заключению, что пластины будут мягко вынуждаться призрачной хваткой квантовых вакуумных флуктуаций к движению в направлении друг друга.

Когда Казимир впервые анонсировал этот теоретический результат, достаточно чувствительное оборудование для проверки его предсказания не существовало. Однако в течение около десяти лет другой датский физик Маркус Спаарней оказался в состоянии инициировать первые рудиментарные проверки сил Казимира, и с тех пор были проведены все более точные эксперименты. Например, в 1997 году Стив Ламоро, тогда работавший в Университете Вашингтона, подтвердил предсказания Казимира с точностью 5 процентов.[4] (Для пластин, размером грубо с игральные карты и расположенных на расстоянии одной десятитысячной сантиметра друг от друга, сила между ними оказалась примерно равной весу отдельной капли росы; это показывает, как сложно измерение силы Казимира). Теперь мало кто сомневается, что интуитивное понятие пустого пространства как статической, спокойной, бедной событиями арены совершенно не имеет оснований. Из-за квантовой неопределенности пустое пространство переполнено квантовой активностью.

Это заставило ученых большую часть двадцатого века полностью разрабатывать математику для описания такой квантовой активности как электромагнитных, так и сильных и слабых ядерных сил. Усилия даром не пропали: расчеты с использованием этой математической схемы согласуются с экспериментальными изысканиями с беспримерной точностью (например, расчеты влияния вакуумных флуктуаций на магнитные свойства электронов согласуются с экспериментальными результатами до одной части на миллиард).[5]

Однако, несмотря на все эти успехи, много десятилетий физики осознавали, что квантовые дрожания провоцируют внутри законов физики неудовлетворительность.

Дрожания и их неудовлетворительность[6]

До настоящего времени мы обсуждали только квантовые дрожания полей, которые существуют внутри пространства. А как насчет квантовых дрожаний самого пространства? Хотя это может звучать загадочно, на самом деле это просто другой пример дрожаний квантовых полей – пример, однако, содержащий особую трудность. В ОТО Эйнштейн установил, что гравитационная сила может быть описана как деформация и искривление ткани пространства; он показал, что гравитационные поля проявляются через форму геометрии пространства (или, более общо, пространства-времени). Теперь, точно подобно любому другому полю, гравитационное поле подвергается квантовым дрожаниям: принцип неопределенности подразумевает, что на мельчайших масштабах расстояний гравитационное поле флуктуирует вверх и вниз. А поскольку гравитационное поле есть синоним формы пространства, такие квантовые дрожания означают, что форма пространства хаотично флуктуирует. Еще раз, как и со всеми примерами квантовой неопределенности, на масштабах наших повседневных расстояний дрожания слишком малы, чтобы ощущаться непосредственно, и окружающая среда выглядит гладкой, безмятежной и предсказуемой. Но чем меньше масштаб наблюдения, тем больше неопределенность и тем больше становится буйство квантовых флуктуаций.

Это проиллюстрировано на Рис.12.2, на котором мы последовательно увеличиваем ткань пространства, чтобы обнаружить его структуру при все более мелких расстояниях. Самый большой уровень внизу на рисунке показывает квантовые возмущения пространства на привычных масштабах и, как вы можете видеть, тут нечего смотреть, – неровности ненаблюдаемо малы, так что пространство выглядит невозмутимым и плоским. Но когда мы проникаем дальше, последовательно увеличивая область, мы видим, что неровности пространства становятся все более неистовыми. На высшем уровне на рисунке, который показывает ткань пространства на масштабах, меньших планковской длины – миллионной миллиардной миллардной миллиардной доли (10–33) сантиметра – пространство становится бурлящим, кипящим котлом бешеных флуктуаций. Как проясняет иллюстрация, обычные понятия лево/право, назад/вперед и вверх/вниз становится так перепутанными ультрамикроскопической суетой, что они теряют всякий смысл. Даже обычное понятие до/после, которое мы иллюстрировали последовательными сечениями пространственно-временного батона, делается бессмысленным квантовыми флуктуациями на временных масштабах короче планковского времени, около десяти миллионных триллионных триллионных триллионных доли (10–43) секунды (которое грубо равно времени, необходимому свету, чтобы пролететь планковскую длину). Подобно размытой фотографии, дикие колебания на Рис. 12.2 делают невозможным однозначно отделить один временной срез от другого, когда интервал времени между ними становится короче планковского времени. Итог такой, что на масштабах короче, чем планковские расстояние и продолжительность, квантовая неопределенность делает ткань космоса настолько перекрученной и искаженной, что обычные концепции пространства и времени больше не применимы.





Дата публикования: 2015-11-01; Прочитано: 468 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...