Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Изощренный, но не злонамеренный 22 страница



На протяжении следующих тридцати лет наблюдаемые подтверждения несветящейся материи продолжали нарастать, но реально вопрос был решен работой астронома Веры Рубин из Института Карнеги в Вашингтоне вместе с Кентом Фордом и другими. Рубин и ее коллеги изучили движения звезд внутри большого числа вращающихся галактик и пришли к заключению, что если то, что мы видим, является тем, что есть на самом деле, то многие звезды галактик должны регулярно выбрасываться наружу. Их наблюдения окончательно показали, что видимая материя галактик нигде не может оказывать достаточно сильное гравитационное притяжение, чтобы удержать наиболее быстрые звезды от освобождения. Однако, их детальный анализ также показал, что звезды будут оставаться гравитационно привязанными, если галактики, где они обитают, погружены в гигантский шар несветящейся материи (как показано на Рис.10.5), чья общая масса намного превосходит массу видимого галактического материала. Итак, как на представлении, где обозначается присутствие одетого в темное мима, даже если видны только его руки в белых перчатках, летающие туда и сюда по неосвещенной сцене, астрономы пришли к выводу, что вселенная должна быть заполнена темной материей – материей, которая не слипается в звезды и потому не излучает свет, и которая при этом оказывает гравитационное притяжение, не становясь видимой. Светящиеся составляющие вселенной – звезды – проявляются как плавающие маяки в гигантском океане темной материи.[20]

Но если темная материя должна существовать, чтобы произвести наблюдаемые движения звезд и галактик, как понять, что это такое? До настоящего времени никто не знает. Идентификация темной материи остается важнейшей и неясной тайной, хотя астрономы и физики предложили большое число возможных составляющих от различных экзотических частиц до космической ванны из миниатюрных черных дыр. Но даже без определения ее состава, через внимательный анализ ее гравитационных эффектов астрономы смогли определить с существенной точностью, как много темной материи распределено по всей вселенной. И ответ, который они нашли, оценивается в 25 процентов от критической плотности.[21] Так что вместе с 5 процентами, находящимися в видимой материи, темная материя приносит нам итог в 30 процентов от количества, предсказанного инфляционной космологией.

Рис 10.5 Галактика, погруженная в шар темной материи (которая искусственно подсвечена, чтобы сделать ее видимой на рисунке).

Ну, определенно, это прогресс, но в течение долгого времени ученые чесали свои затылки, удивляясь, как оценивать оставшиеся 70 процентов вселенной, которая, если инфляционная космология верна, вероятно, как говорят военные, находится в самовольной отлучке. И тогда в 1998 две группы астрономов пришли к одному и тому же шокирующему заключению, которое заставило нашу историю полностью замкнуть круг и еще раз проявило предвидение Альберта Эйнштейна.

Убегающая вселенная

Точно так же, как вы можете стремиться получить второе заключение специалиста для подтверждения медицинского диагноза, физики тоже стремятся получить вторые мнения, когда они приходят к данным или теориям, которые ведут к загадочным результатам. Из этих вторых заключений наиболее убедительными являются те, которые приходят к тем же заключениям с точки зрения, которая резко отличается от исходного анализа. Когда направления объяснений сходятся в одной точке из разных углов, это дает хороший шанс, что мы попали в научное яблочко. Тогда естественно, что с инфляционной космологией, которая строго поддерживает некоторые совсем причудливые вещи, – что 70 процентов массы/энергии вселенной еще должно быть измерено и идентифицировано, – физики стремились к независимому подтверждению. Давно было осознано, что таким трюком могли бы стать измерения параметра торможения.

Еще с момента после начального инфляционного раздувания обычная притягивающая гравитация замедляла расширение пространства. Темп, с которым происходит это замедление, называется параметром торможения. Точное измерение параметра могло бы обеспечить независимый взгляд на полное количество материи во вселенной: больше материи, дает ли она свет или нет, подразумевает большее гравитационное притяжение и потому более определенно ослабляет пространственное расширение.

Многие десятилетия астрономы пытались измерить торможение вселенной, но хотя это делается непосредственно в принципе, это сложная задача на практике. Когда мы наблюдаем удаленные массивные тела, вроде галактик или квазаров, мы видим их такими, какими они были в далеком прошлом: чем они дальше от нас, тем дальше назад во времени мы их наблюдаем. Так, если мы могли бы измерить, как быстро они удаляются от нас, мы получили бы измерение того, как быстро вселенная расширялась в удаленном прошлом. Более того, если мы могли бы провести такие измерения с астрономическими объектами, расположенными на разных расстояниях, мы смогли бы измерить темп расширения вселенной в разные моменты прошлого. Сравнивая эти темпы расширения, мы могли бы определить, как ослабляется расширение пространства во времени и отсюда определить параметр торможения.

Таким образом, для проведения этой стратегии для измерения параметра торможения требуются две вещи: способ измерения расстояния до данного астрономического объекта (так что мы знаем, как далеко назад во времени мы заглядываем) и способ определения скорости, с которой объект удаляется от нас (так что мы знаем темп пространственного расширения в этот момент прошлого). Последнюю составляющую получить проще. Точно так же, как вой сирены полицейского автомобиля падает к более низкому тону, когда он удаляется от вас, частота колебаний света, эмитированного астрономическим источником, также падает, когда объект удаляется. А поскольку свет испускается атомами вроде водорода, гелия или кислорода – атомами, которые входят в состав звезд, квазаров и галактик, – которые тщательно изучены при лабораторных условиях, точное определение скорости объекта может быть проделано через изучение того, как свет, который мы получаем, отличается от света, который мы видим в лаборатории.

Но первая составляющая, метод для точного определения, как далеко находится объект, причиняет астрономам головную боль. Чем дальше что-либо находится, тем более смутно вы его можете различить, но перевести это простое наблюдение в количественное измерение трудно. Чтобы установить дистанцию до объекта по его относительной яркости, вам нужно знать его внутреннюю яркость – насколько ярким бы он был прямо рядом с вами. А определить внутреннюю яркость объекта, удаленного на миллиарды световых лет, тяжело. Генеральная стратегия заключается в поиске видов массивных тел, которые по фундаментальным астрофизическим причинам всегда светят со стандартной заслуживающей доверия яркостью. Если пространство заполнено ярко светящимися 100-ваттными лампочками, хитрость бы удалась, поскольку мы могли бы легко определить расстояние до данной лампочки на основании того, насколько тусклой она выглядит (хотя это была бы сложная задача увидеть 100-ваттную лампочку на существенном удалении). Но, поскольку пространство так не оформлено, что могло бы сыграть роль лампочки стандартной яркости или, на астрономическом языке, что может сыграть роль стандартной свечи? В течение лет астрономы изучали различные возможности, но наиболее успешным кандидатом на сегодняшний день является особый класс взрывов сверхновых.

Когда звезды исчерпывают свое ядерное горючее, направленное наружу давление от ядерной реакции в ядре звезды уменьшается и звезда начинает схлопываться под своим собственнам весом. Ядро звезды рушится в себя, его температура быстро возрастает, что временами приводит к гигантскому взрыву, который сдувает внешние слои звезды в сверкающей демонстрации небесного фейерверка. Такой взрыв известен как сверхновая; на период в неделю отдельная взорвавшаяся звезда может сиять так же ярко, как миллиард солнц. Это в полном смысле слова поражает воображение: отдельная звезда сияет так же ярко, как вся галактика! Различные типы звезд – различных размеров, с разным относительным содержанием различных атомов и так далее – дают начало различным видам взрывов сверхновых, но много лет назад астрономы осознали, что определенные взрывы сверхновых всегда, оказывается, сияют с одинаковой внутренней яркостью. Это взрывы сверхновых типа 1а.

В типе сверхновых 1а белая карликовая звезда – звезда, которая исчерпала свои ресурсы ядерного топлива, но имеет недостаточную массу, чтобы зажечь взрыв сверхновой из себя самой, – всасывает поверхностный материал из находящейся рядом звезды-компаньона. Когда масса звезды-карлика достигает особой критической величины около 1,4 массы Солнца, она подвергается разгону ядерной реакции, что заставляет звезду стать сверхновой. Поскольку такие взрывы сверхновых происходят, когда карликовая звезда достигает одной и той же критической массы, характеристики взрыва, включая его полную внутреннюю яркость, почти совершенно одинаковы от эпизода к эпизоду. Более того, поскольку сверхновые, в отличие от 100-ваттных лампочек, фантастически мощны, они не только имеют стандартную надежную яркость, но вы также можете ясно видеть их через вселенную. Так что они первые кандидаты в стандартные свечи.[22]

В 1990е две группы астрономов, одна под руководством Саула Перлмуттера в Лоуренсовской Национальной Лаборатории в Беркли, а другая под руководством Брайана Шмидта в Австралийском Национальном Университете провели определение торможения, – а отсюда и полной массы/энергии – вселенной путем измерения скоростей удаления сверхновых типа 1а. Идентификация того, что сверхновая принадлежит к типу 1а, является явной и непосредственной, поскольку свет, генерируемый ее взрывом, следует характерной картине пирамидального роста, а затем пологого падения интенсивности. Но на самом деле поймать тип 1а сверхновой на месте преступления является не малым подвигом, поскольку они происходят только раз в несколько сотен лет в типичной галактике. Тем не менее благодаря инновационной технологии одновременного наблюдения тысяч галактик через широкополосные телескопы, команды смогди найти около четырех дюжин сверхновых типа 1а на раздичных расстояниях от Земли. После старательного определения расстояния и скоростей удаления каждой обе группы пришли к совершенно неожиданому заключению: всегда с момента, когда вселенной было около 7 миллиардов лет, темп ее расширения не тормозился. Вместо этого темп расширения возрастал.

Группы пришли к заключению, что расширение вселенной замедлялось первые 7 миллиардов лет после первичного раздувания вовне, почти как автомобиль тормозится, когда он приближается к пункту оплаты на автостраде. Это было, как и ожидалось. Но данные обнаружили, что подобно водителю, который нажимает на педаль газа после преодоления контрольного прохода в пункте оплаты, расширение вселенной с тех пор ускоряется. Темп расширения пространства через 7 миллиардов лет после Взрыва был меньше, чем темп расширения через 8 миллиардов лет после Взрыва, который был меньше, чем темп расширения через 9 миллиардов лет после Взрыва, и так далее, все из которых меньше, чем темп расширения сегодня. Ожидаемое торможение пространственного расширения переключилось на неожиданное ускорение.

Но как так может быть? Ну, ответ обеспечивает подтвержденное второе мнение относительно пропавших 70 процентов массы/энергии, которых физики разыскивали.

Пропавшие 70 процентов

Если вы обратитесь мысленно к 1917 и введению Эйнштейном космологической постоянной, вы получите достаточно информации, чтобы выдвинуть предположение, как это может быть, что вселенная ускоряется. Обычная материя и энергия дает начало обычной притягивающей гравитации, которая замедляет пространственное расширение. Но, поскольку вселенная расширяется и вещи все более отделены друг от друга, это космическое гравитационное притяжение, хотя и продолжает замедлять расширение, становится слабее. А это приводит нас к новому и неожиданному повороту. Если вселенная имела бы космологическую константу, – и если ее значение составляло бы точно нужную, небольшую величину, – то примерно до 7 миллиардов лет после Большого взрыва ее гравитационное отталкивание перекрывалось бы обычным гравитационным притяжением ординарной материи, давая общее замедление расширения в соответствии с данными опыта. Но затем, когда обычная материя рассеялась и ее гравитационное притяжение ослабло, отталкивательное воздействие космологической констансты (чья величина не изменяется, когда материя рассеивается) должно было постепенно взять верх, и эра замедляющегося пространственного расширения должна была смениться эрой ускоренного расширения.

В конце 1990х такие рассуждения и углубленный анализ данных был проведен обеими группами Перлмуттера и Шмидта, чтобы навести на мысль, что Эйнштейн не был неправ восемьдесят лет назад, когда он вводил космологическую постоянную в гравитационные уравнения. Вселенная, предположили обе группы, имеет космологическую постоянную.[23] Ее величина не та, которую предлагал Эйнштейн, поскольку он гнался за статической вселенной, в которой гравитационное притяжение и отталкивание точно уравнивались бы, а эти исследователи нашли, что миллиарды лет отталкивание доминирует. Но несмотря на такие детали, что открытие групп Перлмуттера и Шмидта должно изучаться до достижения полной проверки правильности и завершающиеся исследования сейчас на полном ходу, Эйнштейн еще раз увидел сквозь фундаментальные свойства вселенной такое, которое опередило свое время более чем на восемьдесят лет, когда это свойство было подтверждено экспериментально.

Скорость убегания сверхновых зависит от разницы между гравитационным притяжением обычной материи и гравитационным отталкиванием "темной энергии", заменяющей космологическую постоянную. Принимая количество материи, как видимой, так и темной, около 30 процентов от критической плотности, исследователи сверхновых пришли к заключению, что ускоренное расширение, которое они наблюдали, требует направленного вовне отталкивания космологической постоянной, чья темная энергия дает вклад в критическую плотность около 70 процентов.

Это поразительное число. Если это верно, тогда не только ординарная материя – протоны, нейтроны, электроны – составляют жалкие 5 процентов от массы/энергии вселенной, и не только некоторая, на сегодня неидентифицированная форма темной материи составляет, по меньшей мере, в пять раз больше этого количества, но также львиную долю массы/энергии во вселенной составляет полностью отличающаяся и еще более таинственная форма темной энергии, которая распределена по всему пространству. Если эти идеи верны, они драматически продолжают революцию Коперника: мы не только не являемся центром вселенной, но даже материя, из которой мы сделаны, подобна обломкам, плавающим в космическом океане. Если протоны, нейтроны и электроны были бы удалены из великого творения, полная масса/энергия вселенной почти не уменьшилась бы.

Но имеется вторая, равно важная причина, почему 70 процентов является замечательным числом. Космологическая константа, которая дает вклад 70 процентов в критическую плотность, будет вместе с 30 процентами, приходящимися на ординарную материю и темную материю, давать полную массу/энергию вселенной точно равную полным 100 процентам, предсказываемым инфляционной космологией! Так что направленное наружу оттталкивание, продемонстрированное данными по сверхновым, может быть объяснено именно тем правильным количеством темной энергии для оценки невидимых 70 процентов вселенной, что вызывало недоумение в инфляционной космологии. Измерения сверхновых и инфляционная космология изумительно дополняют друг друга. Они подтверждают друг друга. Каждое направление обеспечивает подтвержденное второе мнение для другого.[24]

Объединяя наблюдаемые результаты по сверхновым с теоретическими предсказаниями инфляции, мы, таким образом, достигаем следующего эскиза космической эволюции, обобщенного на Рис.10.6. Сначала энергия вселенной переносилась полем инфлатона, которое было возвышено от своего состояния минимальной энергии. Вследствие своего отрицательного давления поле инфлатона вызвало гигантский взрыв инфляционного расширения. Затем, примерно на 10–35 секунды позднее, когда поле инфлатона сползло вниз в своей чаше потенциальной энергии, взрыв расширения подошел к концу и инфлатон избавился от своей сдерживаемой энергии, отдав ее на производство ординарной материи и излучения. Много миллиардов лет эти привычные составляющие вселенной оказывали ординарное притягивательное гравитационное воздействие, которое замедляло пространственное расширение. Но когда вселенная выросла и истончилась, гравитационное поле уменьшилось. Около 7 миллиардов лет назад ординарное гравитационное притяжение стало достаточно слабым, чтобы гравитационное отталкивание космологической константы вселенной стало доминировать, и с тех пор темп пространственного расширения постоянно возрастает.

Примерно через 100 миллиардов лет от сегодняшнего дня все галактики, за исключением самых близких, будут угнаны раздувающимся пространством со скоростью больше световой, так что для нас будет невозможно увидеть их вне зависимости от мощности используемых телескопов. Если эти идеи верны, то в далеком будущем вселенная будет безбрежным, пустым и уединенным местом.

Рис 10.6 Линия времени космической эволюции: (а) Инфляционный взрыв, (b) Эволюция по стандартной модели Большого взрыва, (c) Эра ускоренного расширения.

Загадки и прогресс

С этими открытиями, таким образом, кажется, что кусочки космического паззла разложились по местам. Вопросы, остававшиеся без ответа в стандартной теории Большого взрыва, – Что разжигает раздувание пространства вовне? Почему температура микроволнового фонового излучения так однородна? Почему пространство кажется имеющим плоскую форму? – были переадресованы инфляционной теории. Даже при этих условиях тернистые проблемы относительно фундаментальных первооснов продолжали оставаться: Была ли эра перед инфляционным взрывом, и, если была, на что она была похожа? Что привело поле инфлатона, располагавшееся вне его низкоэнергетической конфигурации, к инициации инфляционного расширения? И самый новый из всех вопросов: почему вселенная, видимо, составлена из такой смеси компонентов – 5 процентов привычная материя, 25 процентов темная материя, 70 процентов темная энергия? Несмотря на безмерно радующий факт, что эта космическая рецептура согласуется с инфляционными предсказаниями, что вселенная должна иметь 100 процентов от критической плотности, и хотя это одновременно объясняет ускоренное расширение, найденное из исследований сверхновых, многие физики рассматривают эту смесь для винегрета как явно непривлекательную. Почему, спрашивают многие, состав вселенной оказался таким сложным? Почему имеется горстка рассогласованных ингредиентов в такой кажущейся хаотичной совокупности? Имеется ли некоторый осмысленный лежащий в основании план, который теоретические исследования еще должны обнаружить?

Никто не выдвинул никаких убедительных ответов на эти вопросы; они находятся среди неотложных научных пробем, двигая текущие космологические исследования, и они призваны напоминать нам о многих запутанных узлах, которые мы все еще должны распутать, прежде чем мы сможем утверждать, что имеется полное понимание рождения вселенной. Но, несмотря на еще остающиеся существенные проблемы, инфляция является далеко продвинутой космологической теорией переднего фронта. Несомненно, доверие физиков к инфляции основывается на достижениях, которые мы так долго обсуждали. Но убежденность в инфляционной космологии имеет корни, которые идут еще глубже. Как мы увидим в следующей главе, большое число других рассмотрений – происходящих как от наблюдательных, так и от теоретических открытий, – убедили многих физиков, кто работает в этой области, что инфляционная схема является самым важным и самым устойчивым вкладом нашего поколения в космологическую науку.

11 Кванты в небе с алмазами

ИНФЛЯЦИЯ, КВАНТОВОЕ ДРОЖАНИЕ И СТРЕЛА ВРЕМЕНИ

Открытие инфляционной схемы запустило новую эру в космологических исследованиях, и за прошедшее десятилетие были написаны многие тысячи статей по этой теме. Ученые рассмотрели буквально каждый уголок и щель в теории, которую вы, вероятно, уже можете представить. В то время как многие из этих работ фокусировались на деталях технического характера, другие шли дальше и показывали, как инфляция не только решает специфические космологические проблемы, недостижимые для стандартной модели Большого взрыва, но также обеспечивает мощные новые подходы к большому числу старых вопросов. Среди них имеются три разработки, – связанные с формированием компактных структур, вроде галактик; количеством энергии, требующимся для рождения вселенной, которую мы видим; и (что имеет первоочередную важность для нашей истории) происхождением стрелы времени, – на которых инфляция привела к значительному и, как говорят многие, впечатляющему прогрессу.

Давайте посмотрим.

Квантовое небесное письмо

Решение проблем горизонта и плоскостности, предложенное инфляционной космологией, было ее первым притязанием на славу, причем справедливым. Как мы видели, это было значительным успехом. Но за прошедшие с тех пор годы многие физики пришли к уверенности, что и другие достижения инфляционной теории разделили высшую позицию в списке самых важных вкладов в теорию.

Достойное похвалы достижение имеет отношение к проблеме, о которой до сего момента я не призывал вас задуматься: Как получается, что во вселенной есть галактики, звезды, планеты и другие массивные тела? В последних трех главах я просил вас сосредоточиться на астрономически больших масштабах – масштабах, на которых вселенная выглядит однородной, масштабах настолько больших, что целые галактики могли бы мыслиться как отдельные молекулы Н2О, в то время как сама вселенная является полным однородным стаканом воды. Но рано или поздно космология сталкивается с фактом, что когда вы изучаете космос на "более мелких" масштабах, вы открываете массивные структуры, такие как галактики. И здесь еще раз мы сталкиваемся лицом к лицу с загадкой.

Если вселенная на самом деле гладкая, однородная и одинаковая на больших масштабах – свойство, которое подтверждается наблюдением и которое лежит в сердце всего космологического анализа, – то откуда взялась мелкомасштабная комковатость? Непоколебимый адепт стандартной космологии Большого взрыва может еще раз отбросить этот вопрос, ссылаясь на в высшей степени благоприятные и непостижимо тонко настроенные условия в ранней вселенной: "Возле самого начала," – как мог бы сказать этот верующий, – "вещи были в общем и целом гладкими и однородными, но не совершенно однородными. Как условия сложились таким образом, я сказать не могу. Просто так тогда было. Со временем эти мелкие комковатости росли, поскольку комок имеет более значительное гравитационное притяжение, становясь плотнее, чем их окружение, и, следовательно, захватывая большую часть находящегося рядом материала, становились все больше. В конечном счете комки стали достаточно большими, чтобы сформировать звезды и галактики". Это была бы убедительная история, если бы не имелось два недостатка: полное отсутствие объяснения как полной начальной гомогенности, так и этих важных мелких неоднородностей. В этом моменте инфляционная космология обеспечивает радующий прогресс. Мы уже видели, что инфляция предлагает объяснение крупномасштабной однородности и, как мы сейчас узнаем, объяснительная мощь теории идет еще дальше. Замечательно, что в соответствии с инфляционной космологией начальная неоднородность, которая в конечном счете привела к формированию звезд и галактик, возникает из квантовой механики.

Эта внушительная идея возникает из взаимодействия между двумя кажущимися несопоставимыми областями физики: инфляционным расширением пространства и квантовым принципом неопределенности. Принцип неопределенности говорит нам, что всегда имеются компромиссы в том, насколько точно могут быть определены различные соответственные физические свойства в космосе. Наиболее привычный пример (см. Главу 4) заключается в следующем: чем более точно определено положение частицы, тем менее точно может быть определена ее скорость. Но принцип неопределенности также применим и к полям. По сути по тем же причинам, которые мы использовали в его применении к частицам, принцип неопределенности предполагает, что чем более точно определена величина поля в данном месте в пространстве, тем менее точно может быть определен темп изменения поля в этом месте. (Положение частицы и темп изменения ее положения – ее скорость – играют в квантовой механике роль, аналогичную величине поля и темпу изменения величины поля в данном месте в пространстве).

Я хочу обобщить принцип неопределенности, сказав, что, грубо говоря, квантовая механика делает вещи дрожащими и турбулентными. Если скорость частицы не может быть описана с абсолютной точностью, мы также не можем описать, где частица будет располагаться даже через долю секунды, поскольку скорость сейчас определяет положение потом. В известном смысле частица свободна иметь ту или эту скорость или, более точно, принять смесь многих скоростей, а потому она неистово скачет, бессистемно двигаясь по тому или иному пути. Для полей ситуация аналогичная. Если темп изменения поля не может быть определен с абсолютной точностью, тогда мы также не можем определить, какая величина поля будет в любом месте даже мгновением позже. В известном смысле поле колеблется вверх или вниз с той или иной скоростью или, более точно, оно принимает странную смесь многих различных темпов изменения, а потому его величина будет подвергаться бешеному, смазанному, хаотичному дрожанию.

В повседневной жизни мы напрямую не осведомлены о скачках как частиц, так и полей, поскольку они имеют место на субатомных масштабах. Но именно тут инфляция оказывает большое воздействие. Внезапный взрыв инфляционного расширения, растянул пространство на такой гигантский фактор, что то, что изначально относилось к микроскопическим размерам, вырастает до макроскопических. В качестве ключевого примера пионеры[1] инфляционной космологии обнаружили, что хаотические различия между квантовыми дрожаниями в данном месте пространства и в другом могли бы генерировать небольшие неоднородности в микроскопической реальности; вследствие беспорядочного квантового перемешивания количество энергии в одном месте могло бы на йоту отличаться от количества в другом. Тогда через последующее инфляционное раздувание пространства эти ничтожные вариации могли бы быть растянуты до масштабов, намного больших, чем квантовая область, давая малое количество комковатости, почти как тонкие волнистые линии, нарисованные на воздушном шаре фломастером, свободно растягиваются по поверхности шара, когда вы его надуваете. В этом, уверены физики, заключается происхождение комковатости, которую непоколебимые последователи стандартной модели Большого взрыва просто декларируют без оправдания, мол, "так тогда было". Через гигантское растягивание неизбежных квантовых флуктуаций инфляционная космология обеспечивает объяснение: инфляционное расширение растягивает мелкие неоднородные квантовые дрожания и свободно размазывает их по небу.

В течение нескольких миллиардов лет, прошедших с окончания краткой инфляционной фазы, эти мельчайшие комки продолжили расти через гравитационное слипание. Точно так же, как в картине стандартного Большого взрыва, комки имеют немного более сильное гравитационное притяжение, чем их окружение, так что они стягивают находящийся рядом материал, вырастая все больше. Со временем комки выросли достаточно большими, чтобы дать материю для формирования галактик и звезд, населяющих галактики. Определенно, имеется большое число детальных этапов на пути от маленького комка к галактике, и многие все еще требуют объяснения. Но в квантовом мире, который пережил инфляционное расширение, такая неоднородность могла быть растянута из микромира до намного больших масштабов, обеспечив семена для формирования больших астрофизических тел вроде галактик.

Это основная идея, так что можно свободно перепрыгнуть к следующей секции. Но для тех, кто интересуется, я хотел бы сделать обсуждение немного более точным. Повторим, что инфляционное расширение приходит к завершению, когда величина поля инфлатона сползает вниз своей чаши потенциальной энергии и поле теряет всю содержащуюся в нем энергию и отрицательное давление. Мы описывали это как происходящее однородно по всему пространству, – величина инфлатона здесь, там и везде переживала одну и ту же эволюцию, – как это на самом деле следует из управляющих уравнений. Однако, это строго верно, только если мы пренебрегаем эффектами квантовой механики. В среднем величина поля инфлатона на самом деле сползла ко дну чаши, как мы ожидали, думая о нем как о классическом объекте вроде твердого шарика, скатывающегося по наклонной плоскости. Но точно так же, как лягушка, сползая на дно чаши, может прыгать и трястись по пути, квантовая механика говорит нам, что поле инфлатона переживает трепетание и дрожание. На своем пути вниз величина поля может внезапно подпрыгивать на йоту вверх или дергаться на йоту вниз. А вследствие этого дрожания инфлатон достигает величины наименьшей энергии в разных местах в немного разные моменты. Это приводит к тому, что инфляционное расширение "отстреливается" в немного разные моменты в разных точках пространства, так что величина пространственного расширения в разных местах будет немного различаться, проводя к неоднородностям – ряби – сходным с теми, которые вы видите, когда изготовитель пиццы растягивает тесто немного больше в одном месте, чем в другом и создает маленькие изгибы. В настоящее время нормальная интуиция говорит, что дрожания, возникающие из квантовой механики, будут слишком малыми, чтобы быть значимыми на астрофизических масштабах. Но при инфляции пространство расширяется с таким колоссальным темпом, удваиваясь в размере каждые 10–37 секунды, что даже малейшее отличие в продолжительности инфляции в соседних точках приводит к существенной ряби. Фактически расчеты, предпринятые в специальных вариантах реализации инфляции, показывают, что неоднородности, производимые таким образом, имеют тенденцию становиться даже слишком большими; исследователи часто приводят в порядок детали в данной инфляционной модели (точную форму чаши потенциальной энергии поля инфлатона) для обеспечения, чтобы квантовые дрожания не предсказывали слишком комковатой вселенной. Итак, инфляционная космология дает готовый механизм для понимания, как маломасштабные неоднородности отвечают за возникающие комковатые структуры вроде звезд и галактик во вселенной, которая на самых больших масштабах выглядит строго однородной.





Дата публикования: 2015-11-01; Прочитано: 407 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...