Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Изощренный, но не злонамеренный 23 страница



Согласно инфляционной теории более чем 100 миллиардов галактик, блистающих по всему видимому пространству как небесные бриллианты, являются ничем иным, как то, что квантовая механика явно написала на небе. Для меня это осознание является одним из величайших чудес современной научной эпохи.

Золотой век космологии

Впечатляющее доказательство, поддерживающее эти идеи, исходит от тщательных, основанных на спутниках наблюдениях температуры микроволнового фонового излучения. Я подчеркивал несколько раз, что температура излучения в одной части неба совпадает с температурой в другой части с высокой точностью. Но, что я сейчас хочу отметить, так это то, что в четвертом знаке после десятичной точки температура различных областей является разной. Точные измерения, впервые выполненные в 1992м на спутнике COBE (the Cosmic Background Explorer – исследователь космического фона) и совсем недавно на спутнике WMAP (the Wilkinson Microwave Anisotopy Probe – зонд микроволновой анизотропии им. Вилкинсона), определили, что в то время как в одной области пространства температура может быть 2,7249 Кельвина, в другой области она может быть 2,7250 Кельвина, а еще в другой 2, 7251 Кельвина.

Удивительной вещью является то, что эти экстраординарно малые температурные вариации следуют картине неба, которая может быть объяснена через наделение ее тем же механизмом, который был предложен для затравочного формирования галактик: квантовые флуктуации, растянутые за счет инфляции. Грубая идея состоит в том, что когда мельчайшие квантовые дрожания размазываются по пространству, они делают его ненамного горячее в одной области и ненамного холоднее в другой (фотоны, полученные из слегка более плотного региона тратят больше энергии, преодолевая чуть более сильное гравитационное поле, а потому их энергия и температура является слегка более низкой, чем у фотонов, полученных из менее плотного региона).

(а) (b)

Рис 11.1 (а) Предсказание инфляционной космологией температурных вариаций микроволнового фонового излучения от одной точки на небе к другой, (b) Сравнение этого предсказания с основанными на спутниках наблюдениями.

Физики провели точные вычисления, основанные на этом предположении, и сформировали предсказание того, как температура микроволнового излучения должна была бы меняться от места к месту на небе, как показано на Рис. 11.1а. (Детали не существенны, но горизонтальная ось связана с угловым расстоянием между двумя точками на небе, а вертикальная ось связана с их температурным различием). На Рис. 11.1b эти предсказания сравниваются со спутниковыми наблюдениями, представленными маленькими алмазами, и вы можете видеть, что имеется экстраординарное совпадение.

Я надеюсь, у вас перехватило дух от такого соответствия теории и наблюдения, потому что если нет, это означает, что я не смог передать всю удивительность результата. Потому, на всякий случай, позвольте мне повторно подчеркнуть, что отсюда следует: установленные на спутниках телескопы недавно измерили температуру микроволновых фотонов, которые путешествовали по направлению к нам беспрепятственно около 14 миллиардов лет. Они нашли, что фотоны, прибывающие из различных направлений в пространстве, имеют почти одинаковую температуру, отличающуюся не более чем на несколько десятитысячных градуса. Более того, наблюдения показали, что эти мельчайшие различия в температуре заполняют определенную картину на небе, демонстрируемую упорядоченной последовательностью алмазов на Рис. 11.1b. И, чудо из чудес, расчеты, проделанные сегодня на основании инфляционной схемы, могут объяснить картину этих ничтожных температурных вариаций – вариаций, установленных около 14 миллиардов лет назад, – и, чтобы увенчать сказанное, ключ для этого объяснения содержит в себе дрожания, возникающие из квантовой неопределенности. Класс!

Этот успех убедил многих физиков в состоятельности инфляционной теории. И, что одинаково важно, те и другие точные астрономические измерения, которые стали возможными только недавно, позволили космологии развиться от области, основанной на предположениях и догадках, до области, твердо основанной на наблюдениях, – наступило такое время, которое заставило многих работающих в этой области физиков назвать нашу эру золотым веком космологии.

Создание вселенной

С таким прогрессом у физиков возник мотив посмотреть, как далеко может зайти инфляционная космология. Может ли она, например, решить основную загадку, сконцентрированную в вопросе Лейбница, почему вообще имеется вселенная? Ну, по меньшей мере, с нашим сегодняшним уровнем понимания, такой вопрос требует слишком многого. Даже если космологическая теория проделала бы столбовую дорогу к этому вопросу, мы могли бы спросить, почему именно эта особая теория – ее допущения, составные части и уравнения – была значима, так что это просто сдвигает вопрос о первопричине дальше на один шаг назад. Если одна только логика как-то требуется вселенной, чтобы существовать и чтобы управляться уникальным набором законов с однозначными составными частями, тогда, возможно, мы имели бы убедительную историю. Но на сегодняшний день это ничто иное, как несбыточные мечты.

Связанный, но в некоторой степени менее амбициозный вопрос, который также задавался в разных видах в течение эпох, гласит: Откуда взялась вся масса/энергия, наполняющая вселенную? Хотя инфляционная космология полный ответ не обеспечивает, она отбрасывает на этот вопрос интригующий новый свет.

Чтобы понять, как это происходит, подумаем об огромном, но эластичном ящике, заполненном многими тысячами толпящихся детей, непрерывно бегающими и прыгающими. Представьте, что ящик полностью непроницаемый, так что ни тепло, ни энергия не могут улетучиться, но поскольку он эластичный, его стены могут двигаться наружу. Когда дети непрестанно врезаются в каждую из стен ящика, – сотни за раз, с еще большими сотнями, которые немедленно последуют, – ящик постоянно расширяется. Теперь вы можете ожидать, что поскольку стены непроницаемы, полная энергия, воплощенная в толпящихся детях, будет полностью оставаться внутри расширяющегося ящика. В конце концов, куда еще денется их энергия? Ну, хотя предположение обоснованное, оно не совсем верно. Есть еще одно место, куда может уходить энергия. Энергию, которую тратят дети каждое мгновение, они вбивают в стены, и большая часть этой энергии преобразуется в движение стен. Само расширение ящика поглощает, и поэтому резко уменьшает энергию детей.

Теперь представьте, что несколько проказников среди детей приняли решение изменить положение дел. Они зацепили огромное число резиновых лент между каждой из противоположных движущихся наружу стен ящика. Резиновые ленты оказывают направленное внутрь, отрицательное давление на стены ящика, которое действует в точности противоположно направленному наружу, происходящему от детей, положительному давлению; вместо того, чтобы переводить энергию в расширение ящика, отрицательное давление резиновых лент "отсасывает" энергию у расширения. Когда ящик расширяется, резиновые ленты растягиваются сильнее, что означает, что они заключают в себе возрастающее количество энергии.

Конечно, на самом деле мы интересуемся не расширяющимися ящиками, а расширяющейся вселенной. И наши теории говорят нам, что пространство заполнено не толпами детей и множеством резиновых лент, а, в зависимости от космологической эпохи, однородным океаном поля инфлатона или горячей баней обыкновенных частиц (электронов, фотонов, протонов и т. п.). Тем не менее, простое наблюдение позволяет нам подвести к космологии заключения, которые мы получили в случае ящика. Точно так же, как быстро движущиеся дети работают против направленных вовнутрь сил, оказываемых стенами ящика, когда тот расширяется, быстро движущиеся частицы в нашей вселенной работают против направленных вовнутрь сил, когда пространство расширяется: они работают против силы гравитации. Это наводит на мысль (которая математически подтверждается), что мы можем провести аналогию между вселенной и ящиком, заменив силу гравитации стенами ящика.

Так что, точно так же, как полная энергия, заключающаяся в детях, падает вследствие ее постоянного перекачивания в энергию стен, когда ящик расширяется, полная энергия, переносимая обыкновенными частицами материи и излучения падает вследствие ее постоянного перекачивания в гравитацию, когда вселенная расширяется. Более того, мы видим, что точно так же, как изготовленные проказниками резиновые ленты оказывают отрицательное давление внутри расширяющегося ящика, однородное поле инфлатона оказывает отрицательное давление внутри расширяющейся вселенной. Так что, точно так же, как полная энергия, собранная в резиновых лентах, возрастает при расширении ящика, поскольку она забирает энергию у стен ящика, полная энергия, заключенная в поле инфлатона возрастает, когда вселенная расширяется, поскольку оно извлекает энергию из гравитации.*

(*) "Использованная тут аналогия с резиновыми лентами несовершенна. Направленное внутрь отрицательное давление оказывается резиновыми лентами, затрудняющими расширение ящика, тогда как отрицательное давление инфлатона двигает расширение пространства. Это важное различие иллюстрирует разъяснение, подчеркнутое на странице 286: в космологии нет такого, что однородное отрицательное давление двигает расширение (только разность давлений приводит к силам, так что однородное давление, как положительное, так и отрицательное, не производит силу). Скорее, давление, подобно массе, дает начало гравитационной силе. А отрицательное давление дает начало отрицательной гравитационной силе, которая двигает расширение. Это не повлияет на наши заключения."

Обобщаем: когда вселенная расширяется, материя и радиация теряют энергию в пользу гравитации, в то время как поле инфлатона извлекает энергию из гравитации.*

(*) "Когда вселенная расширяется, потеря энергии фотонами может непосредственно наблюдаться вследствие растягивания их длин волн, – они подвергаются красному смещению, – и чем больше длина волны фотона, тем меньшей энергией он обладает. Фотоны микроволнового фона подвергались такому красному смещению около 14 миллиардов лет, что объясняет их большие – микроволновые – длины волн и их низкую температуру. Материя подвергается сходной потере своей кинетической энергии (энергии движения частиц), но полная энергия, связанная в массе частиц (их энергия покоя – энергия, эквивалентная их массе, когда они покоятся) остается постоянной."

Стержневая природа этих наблюдений становится ясной, когда мы попытаемся объяснить происхождение материи и радиации, которые составляют галактик, звезды и все другое, чем населен космос. В стандартной теории Большого взрыва масса/энергия, переносимая материей и излучением, постоянно уменьшается при расширении вселенной, так что масса/энергия в ранней вселенной намного превышала то, что мы видим сегодня. Таким образом, вместо предложения объяснения, откуда взялась вся масса/энергия, в настоящее время населяющая вселенную, стандартная модель Большого взрыва ведет бесконечную войну с противником, занявшим позицию на высоте: чем дальше назад заглядывает теория, тем больше потери массы/энергии она должна как-то объяснить.

Однако в инфляционной космологии верно почти противоположное. Повторим, что инфляционная теория утверждает, что материя и радиация были произведены в конце инфляционной фазы, когда поле инфлатона выделило удерживаемую им энергию, скатившись с возвышения в выемку в своей чаше потенциальной энергии. Следовательно, важный вопрос будет таков: точно так же, как инфляционная фаза была доведена до завершения, которое теория может оценить для поля инфлатона, содержащего громадное количество массы/энергии, есть ли все необходимое, чтобы выдать материю и радиацию в сегодняшней вселенной?

Ответ на этот вопрос таков, что инфляция может это сделать, даже совершенно не вспотев. Как уже объяснялось, поле инфлатона является гравитационным паразитом – оно поедает гравитацию, – так что полная энергия поля инфлатона возрастает, когда пространство расширяется. Более точно, математический анализ показывает, что плотность энергии поля инфлатона остается постоянной в течение инфляционной фазы быстрого расширения, подразумевая, что собранная в нем полная энергия растет прямо пропорционально объему заполненного им пространства. В предыдущей главе мы видели, что размер вселенной в ходе инфляции возрастает, как минимум, на фактор 1030, который означает, что объем вселенной возрастает на фактор, по меньшей мере, (1030)3 = 1090.

Соответственно, заключенная в поле инфлатона энергия возрастет на тот же самый гигантский фактор: когда инфляционная фаза подходит к концу, примерно через 10–35 секунды после ее начала, энергия поля инфлатона возрастает на фактор порядка 1090, если не больше. Это означает, что при запуске инфляции полю инфлатона не нужно иметь много энергии, поскольку гигантское расширение, им порожденное, гигантским образом увеличит переносимую им энергию. Простой расчет показывает, что мельчайший кусок пространства, порядка 10–26 сантиметра в поперечнике, заполненный однородным полем инфлатона – весом не более двадцати фунтов – в ходе последующего инфляционного расширения приобретает достаточно энергии, чтобы оценить ее как все, что мы видим во вселенной сегодня.[2]

Так что в полном контрасте со стандартной теорией Большого взрыва, в которой полная масса/энергия ранней вселенной была невыразимо гигантской, инфляционная космология через "вычерпывание" гравитации может произвести всю обыкновенную материю и излучение вселенной из мельчайшего двадцатифунтового куска заполненного инфлатоном пространства. Это ни в коем случае не отвечает на вопрос Лейбница о том, почему имеется нечто вместо ничего, поскольку нам еще необходимо объяснить, почему имелся инфлатон или даже пространство, которое он занимал. Но нечто, требущее объяснения, весит много меньше, чем моя собака Рокки, и это определенно совсем другая стартовая позиция, чем предусматривалось в стандартной модели Большого взрыва.*

(*) "Некоторые исследователи, включая Алана Гута и Эдди Фархи, изучали, можно ли гипотетически создать новую вселенную в лаборатории путем синтезирования кусочка поля инфлатона. Абстрагируясь от факта, что мы все еще не имеем прямой экспериментальной проверки, что это за вещь такая поле инфлатона, отметим, что двадцать фунтов поля инфлатона должно было бы быть втиснуто в ничтожный объем пространства размером грубо около 10–26 сантиметра, а потому плотность была бы гигантской – примерно в 1067 раз больше плотности атомных ядер – что находится за пределами того, что мы можем произвести сейчас или, вероятно, всегда."

Инфляция, гладкость и стрела времени

Возможно, мой энтузиазм уже выдал мои пристрастия, но весь прогресс, который наука достигла в наше время, достижения в космологии наполняют меня величайшим трепетом и смирением. Мне кажется, что никогда не терялся тот ажиотаж, который я первоначально почувствовал годы назад, когда впервые изучал основы ОТО и осознал, что из нашего мельчайшего угла пространства-времени мы можем применить теорию Эйнштейна для изучения эволюции целого космоса. Теперь, несколько десятилетий спустя, технологический прогресс подвергает эти некогда абстрактные предположения, как вселенная вела себя в свои самые ранние моменты, наблюдательному тестированию, и теория на самом деле работает.

Повторим, однако, что помимо общей важности космологии для истории пространства и времени, Главы 6 и 7 направили нас на изучение истории ранней вселенной со специальной целью: поискать истоки стрелы времени. Вспомним из этих глав, что единственная убедительная схема, которую мы нашли для объяснения стрелы времени, заключалась в том, что ранняя вселенная имела экстремально высокий порядок, то есть экстремально низкую энтропию, что установило основу для будущего, в котором энтропия всегда увеличивается. Точно так же, как страницы Войны и Мира не могли бы обладать способностью все более беспорядочно перемешиваться, если бы они не были в некоторый момент аккуратно упорядоченными, так и вселенная тоже не могла бы обладать способностью все более разупорядочиваться – молоко разливаться, яйца разбиваться, люди стареть – без того, чтобы она имела высоко упорядоченную конфигурацию в начале. Загадка, с которой мы столкнулись, заключается в объяснении, как могла возникнуть эта высоко упорядоченная низкоэнтропийная стартовая точка.

Инфляционная космология предлагает солидный прогресс в этом вопросе, но позвольте мне сначала напомнить вам загадку более точно в случае, если некоторые существенные детали ускользнули от вашего внимания.

Имеется строгое доказательство и малые сомнения, что раньше в истории вселенной материя была распределена по всему пространству однородно. Обычно это может быть охарактеризовано высокоэнтропийной конфигурацией – подобно молекулам углекислого газа из бутылки колы, распространившимся однородно по всей комнате, – и потому может быть настолько банальным, что едва ли требует объяснения. Но когда действует гравитация, как это имеет место при рассмотрении целой вселенной, однородное распределение материи является редкой, низкоэнтропийной, высоко упорядоченной конфигурацией, поскольку гравитация подвигает материю к формированию комков. Аналогично, гладкая и однородная кривизна пространства также имеет очень низкую энтропию; она высоко упорядочена по сравнению с дико вспученной, неоднородной пространственной кривизной. (Точно так же, как для страниц Войны и Мира имеется много способов быть разупорядоченными, но только один способ быть упорядоченными, имеется много способов для пространства иметь разупорядоченную, неоднородную форму, но всего несколько способов, в которых оно может быть полностью упорядоченным, гладким и однородным). Так что мы остаемся с загадкой: Почему ранняя вселенная имела низкоэнтропийное (высоко упорядоченное) распределение материи вместо высокоэнтропийного (сильно разупорядоченного) комковатого распределения материи, такого как разнообразные скопления черных дыр? И почему кривизна пространства была гладкой, упорядоченной, однородной с экстремально высокой точностью, а не пронизанной различными гигантскими искажениями и сильными искривлениями, также подобными тем, которые генерируются черными дырами?

Как впервые детально обсудили Пол Дэвис и Дон Пейдж[3], инфляционная космология предлагает важный прорыв в решении этих проблем. Чтобы увидеть это, удержим в уме, что существенное допущение загадки заключается в том, что раз комки формируются тут и там, их более сильное гравитационное притяжение собирает все больше материала, заставляя их расти дальше; соответственно, раз рябь в пространстве формируется тут и там, ее большее гравитационное притяжение имеет тенденцию делать рябь еще более сильной, приводя к ухабистой, сильно неоднородной пространственной кривизне. Когда действует гравитация, обычно и обыкновенно высокоэнтропийные конфигурации являются комковатыми и ухабистыми.

Но отметим следующее: эти рассуждения относятся полностью к притягивательной природе обычной гравитации. Комки и ухабы растут потому, что они сильно притягивают соседний материал, добиваясь, чтобы такой материал присоединился к комку. В течение короткой инфляционной фазы, однако, гравитация была отталкивательной и это меняет все. Возьмем форму пространства. Гигантское направленное наружу воздействие отталкивательной гравитации приводит пространство к раздуванию так быстро, что начальные изгибы и деформации были плавно растянуты, почти как полностью надутый сморщенный воздушный шар растягивает свою складчатую поверхность.* И, что еще существеннее, поскольку объем пространства возрастает на колоссальный фактор во время короткого инфляционного периода, плотность каждого комка материи полностью падает, почти как плотность рыб в вашем аквариуме понизится, если его объем неожиданно возрастет до размеров Олимпийского плавательного бассейна. Таким образом, хотя притягивательная гравитация заставляет комки материи и неровности пространства расти, отталкивательная гравитация действует противоположно: она заставляет их уменьшаться, приводя к все более гладкому, все более однородному результату.

(*) "Не надо смешивать следующее: Инфляционное растягивание квантовых дрожаний, обсуждавшееся в последней секции, все еще производит мелкие неизбежные неоднородности около 1 части из 100 000. Но эта мельчайшая неоднородность размещается на гладкой во всех других отношениях вселенной. Мы сейчас описываем, как возникает последняя – лежащая в основе гладкая однородность".

Таким образом, к концу инфляционного взрыва размер вселенной вырастает фантастически, любая неоднородность в кривизне пространства растягивается и любые начальные комки чего угодно полностью растворяются до состояния несущественности. Более того, когда поле инфлатона сползает вниз на дно своей чаши потенциальной энергии, приводя взрыв инфляционного расширения к завершению, оно конвертирует удерживаемую энергию в почти однородное море частиц ординарной материи во всем пространстве (выравнивая все вплоть до мельчайших, но важнейших неоднородностей, происходящих от квантовых дрожаний). В целом все это звучит как большой прогресс. Результат, которого мы достигли с помощью инфляции, – гладкая, однородная пространственная протяженность, населенная почти однородным распределением материи, – это в точности то, что мы пытались объяснить. Это в точности низкоэнтропийная конфигурация, которая нам была нужна для объяснения стрелы времени.

Энтропия и инфляция

На самом деле, это существенный прогресс. Но две важных проблемы остаются.

Первое, мы, кажется, пришли к заключению, что инфляционный взрыв разглаживает вещи и отсюда снижает полную энтропию, олицетворяя физический механизм, – не только статистическую случайность, – который выглядит как нарушающий второй закон термодинамики. В этом случае или наше понимание второго закона или наши текущие рассуждения будут иметь ошибку. В действительности, однако, мы с этой проблемой не сталкиваемся, поскольку полная энтропия не уменьшилась в результате инфляции. Что реально произошло в ходе инфляционного взрыва, так это то, что полная энтропия возросла, но возросла намного меньше, чем она могла бы быть. Вы видите к концу инфляционного взрыва, что пространство гладко растянулось, так что гравитационный вклад в энтропию – энтропия, связанная с возможной неровной, неупорядоченной, неоднородной формой пространства, – был минимален. Однако, когда поле инфлатона сползло на дно своей чаши и избавилось от своей запасенной энергии, можно оценить количество произведенных частиц материи и излучения примерно в 1080. Такое огромное число частиц, как и книга с огромным числом страниц, заключает в себе огромное количество энтропии. Таким образом, даже если гравитационная энтропия снизилась, рост в энтропии от производства всех этих частиц более чем компенсирует такое снижение. Полная энтропия возросла, точно так, как мы ожидали от второго закона термодинамики.

Но, и это важный момент, инфляционный взрыв через разглаживание пространства и обеспечение однородного, низкоэнтропийного гравитационного поля создает огромный зазор между тем, каким был вклад гравитации в энтропию, и тем, каким он мог бы стать. Полная энтропия возросла во время инфляции, но на совершенно незначительную величину по сравнению с тем, насколько она могла возрасти. В этом смысле и понимается, что инфляция генерирует низкоэнтропийную вселенную: к концу инфляции энтропия возросла, но совсем не на тот фактор, на который возросла пространственная протяженность. Если энтропию связать со стоимостью собственности, он стала бы такой, как если бы Нью Йорк приобрел пустыню Сахара. Полная стоимость общей собственности возросла, но на мельчайшую величину по сравнению с полным ростом площади земли.

Все время с момента завершения инфляции гравитация пытается наверстать энтропийную разницу. Каждый комок – будь он галактикой, или звездой в галактике, или планетой, или черной дырой, – который гравитация последовательно выудила из однородности (комок, посеянный мельчайшими неоднородностями от квантовых дрожаний), имеет растущую энтропию и подводит гравитацию на один шаг ближе к реализации ее энтропийного потенциала. В этом смысле инфляция представляет собой механизм, который дает большую вселенную с относительно низкой гравитационной энтропией и, таким образом, устанавливает основу для последующих миллиардов лет гравитационного слипания, которое привело к тому, свидетелями чего мы сегодня являемся. Итак, инфляционная космология задает направление стреле времени путем создания прошлого с чрезвычайно низкой гравитационной энтропией; будущее является направлением, в котором эта энтропия возрастает.[4]

Вторая проблема становится очевидной, когда мы продолжим углублять путь, к которому стрела времени привела нас в Главе 6. От яйца к курице, которая его снесла, к куриному корму, к растительному миру, к солнечному теплу и свету, к изначальному однородно распределенному газу Большого взрыва мы следовали эволюции вселенной в прошлое, которое имело всегда больший порядок, на каждом этапе сдвигая загадку низкой энтропии на один шаг дальше назад во времени. Теперь мы еще осознали, что только самый ранний этап инфляционного расширения может естественно объяснить гладкие и однородные последствия Взрыва. Но как насчет самого инфлатона? Можем ли мы объяснить первое звено в той цепочке, которой мы следовали? Можем ли мы объяснить, почему условия, которые требовались перед инфляционным взрывом, полностью осуществились?

Это проблема высшей важности. Не имеет значения, как много загадок решила инфляционная космология в теории, если эра инфляционного расширения никогда не имела место, подход будет признан не имеющим отношения к делу. Более того, поскольку мы не можем пойти назад в раннюю вселенную и прямо определить, произошла ли инфляция, оценка того, сделали ли мы реальный прогресс в установлении направления стрелы времени, требует, чтобы мы определили вероятность, что условия, необходимые для инфляционного взрыва, были выполнены. Это значит, что физики раздражены из-за уверенности стандартной модели Большого взрыва в тонко настроенных однородных начальных условиях, которые, будучи мотивированы наблюдениями, необъяснимы теоретически. Кажется глубоко неудовлетворительным для низкоэнтропийного состояния ранней вселенной просто допустить его; кажется бессодержательным установить во вселенной стрелу времени без какого-либо объяснения. На первый взгляд инфляция предлагает прогресс, показывая, что то, что допускается в стандартной модели Большого взрыва вытекает из инфляционной эволюции. Но если инициирование инфляции требует еще других, более специальных, чрезвычайно низкоэнтропийных условий, мы оказались бы опять в самом начале. Мы просто поменяли бы специальные условия модели Большого взрыва на специальные условия, необходимые для поджигания инфляции, и загадка стрелы времени осталась бы точно такой же загадкой.

Что за условия необходимы для инфляции? Мы видели, что инфляция является неизбежным результатом посадки величины поля инфлатона на короткое время и в рамках маленькой области на высокоэнергетическое плато в его чаше потенциальной энергии. Наша задача, следовательно, свелась к определению, насколько вероятной в действительности является такая стартовая конфигурация. Если запуск инфляции обеспечивается легко, мы будем в великолепной форме. Но если достижение требуемых условий экстраординарно маловероятно, мы просто сдвинем вопрос стрелы времени дальше на один шаг назад – к поиску объяснения для низкоэнтропийной конфигурации поля инфлатона, которое скатывается шариком.

Я сначала опишу современные соображения по этой проблеме в наиболее оптимистичном свете, а затем вернусь к существенным элементам истории, которые остались туманными.

Возвращение Больцмана

Как отмечалось в предыдущей главе, инфляционный взрыв является лучшей мыслью о том, как развивались события в заранее существующей вселенной, а не мыслью о создании самой вселенной. Хотя мы не имеем неоспоримого понимания о том, на что вселенная была похожа в течение самой предынфляционной эры, посмотрим, как далеко мы можем зайти, если предположим, что вещи были в строго ординарном, высокоэнтропийном состоянии. В особенности, давайте представим, что изначальное предынфляционное пространство было пронизано деформациями и изгибами и что поле инфлатона также было сильно разупорядочено, его величина прыгала туда и сюда подобно лягушке в горячей металлической чаше.

Теперь, точно так же, как вы можете ожидать, что если вы упорно играете в честно действующий игровой автомат, раньше или позже хаотически крутящиеся колеса лягут на три алмаза, мы ожидаем, что раньше или позже случайные флуктуации в этой высокоэнергетической турбулентной арене изначальной вселенной заставят величину поля инфлатона выпрыгнуть в правильную однородную величину в некотором малом кусочке пространства, инициировав направленный вовне взрыв инфляционного расширения. Как объяснялось в предыдущей секции, расчеты показывают, что куску пространства необходимо быть исключительно маленьким – порядка 10–26 сантиметра в поперечнике – для результирующего космологического расширения (инфляционного расширения, сменяемого расширением стандартной модели Большого взрыва), чтобы он был растянут до величины больше, чем вселенная, которую мы видим сегодня. Таким образом, вместо допущения или простого декларирования, что условия в ранней вселенной были такими, чтобы инфляционное расширение имело место, в таком способе размышлений необходимые условия появляются из фактов ультрамикроскопических флуктуаций, весом не более двадцати фунтов, возникающих внутри ординарного обыкновенного окружения с беспорядком.





Дата публикования: 2015-11-01; Прочитано: 407 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...