Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Среди большого числа высокомолекулярных соединений в современной технике и технологии каучук находит особенно широкое применение.
Каучук является основным компонентом при изготовлении резиновых, резино-тканных и резино-металлических изделий, используемых в промышленности, сельском хозяйстве, на транспорте и в домашнем обиходе. На основе каучуков получают более 40000 наименований резиновых изделий, к их числу относятся автомобильные и авиационные шины, приводные ремни, потребность в которых исчисляется в десятках миллионов квадратных метров в год, гибкие шланги и рукава, детали машин и механизмов, предметы санитарии н гигиены и т. д. Такое широкое применение резин объясняется тем, что они обладают уникальной способностью к обратным деформациям в сочетании с высокой прочностью, эластичностью, сопротивляемостью к истиранию.
Резины устойчивы к действию многих химических реагентов, что позволяет использовать их для футеровки химической аппаратуры и при изготовлении деталей уплотнений. Они газо- и водонепроницаемы, имеют высокие диэлектрические свойства и являются незаменимым материалом при производстве кабеля, аэростатов, надувных лодок, скафандров и т. п. Новые быстро развивающиеся отрасли техники требуют разработки современных типов каучуков и резин, выдерживающих температуры от —100 до +350 °С, устойчивых к действию окислителей, бензина, масел, растворителей, облучения и т. п.
Сырье и материалы резинового производства
Сырьем для получения резины служат сырой каучук, синтетические латексы и смолы, регенерат, вулканизующие вещества, ускорители вулканизации, активаторы или замедлители вулканизации, красители, пластификаторы, противостарители, активные наполнители, армирующие и вспомогательные материалы. Основным сырьем, определяющим свойства резин, является каучук.
Каучуки являются высокомолекулярными соединениями. Они имеют линейное строение и обладают способностью к обратной деформации в сочетании с высокой прочностью.
Для изготовления резин применяется натуральный и синтетические каучуки.
Натуральный каучук относится к каучукам общего назначения, т. е. к каучукам, применяемым для изготовления резиновых изделий широкого потребления (шин, ремней, обуви и т. д.).
Синтетические каучуки в зависимости от строения макромолекулы подразделяются на органические, элементоорганические и неорганические. Они могут быть гомополярными, т. е. макромолекулы их состоят из звеньев одного мономера, и сополимерными, когда макромолекулы содержат два или несколько мономерных звеньев.
Натуральный каучук до 1932 г. был единственным сырьевым материалом, применяемым для производства резины. Получают натуральный каучук (НК) из млечного сока некоторых каучуконосных растений («Као-чу», т. е. «слезы дерева»), преимущественно из тропического дерева гевеи, из которого выделяют 99% всего мирового каучука. Млечный сок (латекс) дерева гевеи содержит частички каучука (до 30%), взвешенные в воде (до 60%), белковые вещества (2—2,7%), смолы (1,65—3,4%), сахаристые (1,5— 4,2%) и минеральные (0,2—0,7%) вещества. На состав латекса влияют возраст дерева, время года, климатические условия.
При обработке млечного сока на месте его добычи кислотами, например уксусной, происходит коагуляция сока с образованием гелеобразного продукта. Этот продукт пропускают через вальцы, сушат, коптят (для предохранения от загнивания при хранении) и в виде листов, упакованных в кипы, направляют потребителю.
Макромолекулы натурального каучука состоят из элементарных звеньев изопрена; он имеет малую плотность (917—937 кг/м3) и большую молекулярную массу (от 150000 до 500000), что соответствует длине макромолекулы 10000— 40000 А при поперечном сечении 3 А. Такие длинные нитевидные гибкие макромолекулы и определяют физические и механические свойства каучука. Он обладает высокой эластичностью, прочностью, малой гигроскопичностью и теплопроводностью и является превосходным изолятором. Прочность при разрыве его составляет от 1 до 4 МПа, а в вулканизированном состоянии — до 30 МПа.
НК является термопластичным полимером. При нагревании выше 200 °С он разлагается с образованием изопрена и других низкомолекулярных соединений, а при радиационном облучении выделяется водород. Натуральный каучук растворяется в бензине, бензоле, сероуглероде и др. с образованием вязких растворов, которые используются как клеи.
Поскольку в макромолекуле каучука имеются двойные связи, он вступает во взаимодействие с галогенами, тиоспиртами, тиокислотами, кислородом, озоном и др. При взаимодействии с серой и органическими перекисями линейная структура макромолекул нату- рального каучука превращается в сетчатую (процесс вулканизации). Это свойство каучука лежит в основе получения резины.
Натуральный каучук в основном применяется для изготовления резины, причем большая его часть используется для получения автомобильных шин и только около 1 % применяется в обувной промышленности и для получения резинового клея.
Синтетические каучуки (СК) в настоящее время занимают ведущее место (около 2/3 всего производимого в мире каучука) при производстве резины.
В зависимости от применения СК подразделяют на каучуки общего назначения: бутадиеновый (СКВ), бутадиен-стирольный (СКС), бутадиен-метилстирольный (СКМС), изопреновый (СКИ); каучуки специального назначения: бутадиен-нитрильный (СКН), хлоропреновый (наирит), бутилкаучук, тиоколовый, силиконовый (СКТ) и др.
Первый в мире синтетический каучук был получен в СССР в 1932 г., несколько позже каучук ехали получать в Германии (1938 г.) и США (1942 г). Процесс получения синтетического каучука включает две стадии: синтез мономеров и полимеризацию или поликонденсацию мономеров.
Для получения СК и латексов применяют так называемые каучукогенные мономеры: бутадиен, стирол, изопрен, хлоропрен, изобутилен и др.
Натрий-бутадиеновый каучук (СКВ) является первым каучуком, полученным синтетическим путем по методу акад. Лебедева С. В. полимеризацией бутадиена в присутствии металлического натрия. Бутадиен для этой цели получили из этилового спирта в присутствии катализаторов. В настоящее время его получают в основном, дегидрированием бутана.
Натрий-бутадиеновый каучук обладает низкими адгезионными свойствами и эластичностью, характеризуется невысокими прочностными свойствами и морозостойкостью по сравнению с натуральным и другими синтетическими каучуками, поэтому в настоящее время он практически не применяется.
Бутадиен-стирольные каучуки (СКС, СКМС) получают из бутадиена СН2 = СН — СН = СН2 и стирола С6Н5СН = СН2(СКС), бутадиена и метилстирола С6Н5ССН3 = СН2 (СКМС). Процесс сополимеризации приведенных выше мономеров проводят эмульсионным способом по непрерывной схеме.
В зависимости от содержания стирола бутадиен-стирольные каучуки маркируют различными числовыми индексами, например, каучук типа СКС-10, содержит 10% стирола и 90% бутадиена. При увеличении в каучуках стирола или метилстирола ухудшаются клеющая способность, эластические свойства, морозостойкость, но улучшаются показатели прочности.
Вулканизированные каучуки СКС и СКМС имеют низшую прочность, которая резко возрастает (в 10—12 раз) при введении в резиновую смесь газовой сажи. Диэлектрические свойства этих каучуков приближаются к свойствам натурального, а молекулярная масса увеличивается от 10000 до 100000.
Из этой группы каучуков наибольшее применение находят каучуки СКС40/СКС-30, СКМС-10, СКМС-30. Каучуки СКС-30 и СКМС-30 относятся к универсальным каучукам. Они используются для изготовления шин, транспортерных лент, обуви и других резиновых изделий. Каучуки СКС-10 и СКМС-10 обладают высокой прочностью при истирании, твердостью, растворяются в бензине, бензоле и других углеводородах, хорошо смешиваются с различными ингредиентами резиновых смесей. Прочность на разрыв не- наполненных резин на основе этих каучуков невысока. Для повышения механических свойств в состав резин вводят наполнители, например 50 масс, частей сажи. Такие резины имеют прочность на разрыв 20—25 МПа и температуру стеклования от —72 до —77°С.
Синтетический изопреновый каучук (СКИ), полученный впервые в Советском Союзе, находит широкое применение для получения резины. Его готовят полимеризацией изопрена (~15%) в растворе изопентана или другого растворителя непрерывным методом при температуре 18—25 СС в присутствии комплексных катализаторов (металлического лития, тетрахлорида титана, триизобутил- алюминия, триэтилалюминия и др.):
СКИ обладает высокой прочностью и клеющей способностью, сохраняет свои свойства при нагревании до + 100°С. По своему строению, физическим, технологическим, эластическим и эксплуатационным свойствам СКИ близок к НК, поэтому, в отличие от других каучуков общего назначения, он вполне может заменить натуральный каучук при изготовлении резины.
Резины, получаемые из СКИ, набухают в маслах, бензине и других органических веществах, окисляются кислородом воздуха, морозостойки и газонепроницаемы.
Хлоропреновый каучук (наирит) получают эмульсионной полимеризацией хлоропрена:
Процесс проводят в водной среде в присутствии эмульгатора (олеинат натрия). Получаемый латекс коагулирует при взаимодействии с кислотами и солями, после чего гелеобразный продукт промывают, сушат и превращают в листы, блоки, бруски. Средняя молекулярная масса такого каучука — 100000. Наирит не требует специальной пластификации, так как обладает высокой клейкостью. Это упругое, но более жесткое по сравнению с натуральным каучуком вещество.
Прочностные свойства его близки к свойствам натурального каучука. Он нерастворим в углеводородах жиррого ряда, но растворяется в хлорированных и ароматических углеводородах, устойчив к воздействию света, озона, кислорода, огнестоек.
При получении резины каучук вулканизируют в присутствии' окислов цинка, ртути и др. Резины, получаемые на его основе, обладают высокой прочностью от 22 до 35 МПа при относительном удлинении 800—1000%.
Наирит неустойчив при изменении температур, твердеет при хранении, а при нагревании от него отщепляется хлористый водород. Применяется он главным образом в производстве ремней, транспортерных лент, клеев, для изготовления кабеля.
Кремнийорганические (силиконовые) каучуки получают при поликонденсации циклических силоксанов или линейных силоксан- диолов. Полимеры имеют линейное строение, например
где R, R'— метальные, этильные, фенильные, винильные и другие группы.
Кремнийорганические каучуки могут быть высокомолекулярными (молекулярная масса от 500000 до 1000000) и низкомолекулярными от 20000 до 100000. Каучуки озоно-, морозо- и термостойки, но механические их свойства, масло- и нефтестойкость хуже, чем любого другого каучука. В отличие от других видов вулканизацию кремнийорганических каучуков ведут в присутствии органических перекисей (например перекиси бензоила) при нагревании до 200 °С. Силиконовые каучуки используются при получении резин с повышенной морозо- и теплостойкостью, а также для изготовления деталей, работающих на сжатие. Из резины готовят жароупорные прокладки, уплотнения, клапаны, электроизоляцию и т. д.
В настоящее время выпускается несколько видов каучуков: ди- метилсилоксановый СКТ, метилвинилсилоксановый СКТВ, этил- силоксановый СКТЭ, фенилсилоксановый СКТ ФВ, бор- и фосфор- силоксановые, низкомолекулярные каучуки СКТН, СКТН-1 и др.
Резины, изготовленные на основе силиконовых каучуков, начинают разлагаться при температуре 600—700°С, но в течение нескольких секунд они могут выдерживать температуру 3000 °С.
Вспомогательные материалы. Синтетические латексы - сложные коллоидные системы, содержащие до 35% каучуков с частицами размером от 5-10-6 — 5- 10-4см. Они устойчивы в воде благодаря присутствию в системе эмульгатора.
Латексы получают эмульсионной полимеризацией и сополимеризацией. Наибольшее применение находят бутадиен-стирольные, хлоропреновые, бутадиен-нитрильные, бутадиен-винилиденхлоридные латексы. Они широко используются в производстве губчатых изделий, нетканных материалов, тонкостенных изделий, для пропитки волокон, в производстве бумаги, кожи, красок и т. д. Особенно незаменимы латексы при изготовлении изоляционных изделий и как пропиточный материал для тканей, используемых при изготовлении шин и резино-технических изделий, что позволяет усилить прочность корда и тем самым увеличить срок эксплуатации шин.
Синтетические смолы - вводят в резиновую смесь и в пропиточные составы как добавки к каучуку для улучшения обработки резиновой смеси, повышения ее износостойкости и прочности резиновых изделий. Наибольшее применение из полимеров находят поли- изобутилен, полипропилен, поливинилхлорид, фенолоформальдегидные смолы.
Регенерат - материал, получаемый в результате переработки отходов резинового производства, резин, изношенных шин и других изделий. Получают регенерат тепловой обработкой тонко измельченной резины в течение 10—16 ч при 150—200 °С в присутствии пластификаторов и других веществ. В результате нагревания происходит девулканизация резины и материал превращается в пластичную массу.
Регенерат широко применяется в резиновой промышленности, так как он в 3—5 раз дешевле каучука. Кроме того, введение регенерата в резиновую смесь облегчает ее обработку и изготовление изделий, увеличивает химическую стойкость резин и их сопротивление старению.
Армирующие материалы - применяемые при изготовлении резиновых изделий, позволяют им сохранять свои размеры под нагрузкой или при нагревании. При работе вводимый в резиновые изделия каркас из ткани или металла воспринимает всю механическую нагрузку, регулирует деформируемость изделия, а резина придает ему необходимую эластичность. В зависимости от назначения изделий армирующими материалами могут быть стальные тросы и проволока, природные и химические волокна, различные ткани и т. д.
Ингредиенты резиновых смесей. Резина - материал, способный к большим высокоэластичным деформациям. Получают ее из каучука (или регенерата) или из смеси каучука и других веществ, получивших название ингредиентов. Число веществ, входящих в состав резиновой смеси, зависит от условий работы резины и изделий на ее основе и колеблется от 5 до 20.
Как указывалось ранее, макромолекулы каучука имеют линейное или разветвленное строение, поэтому для превращения линейной структуры в пространственную (сетчатую) в резиновую смесь вводят.вулканизующие вещества (серу, окислы и перекиси металлов и др.). которые образуют поперечные мостики между длинными цепями макромолекул (процесс вулканизации). Вулканизация может быть вызвана ядерным облучением, в этом случае вулканизатор не требуется.
Процесс вулканизации можно ускорить введением в резиновую смесь ускорителей вулканизации (полисульфиды, каптакс и др.), которые способствуют также улучшению физико-механических свойств резины. В ряде случаев при получении резины для ускорения или замедления действия ускорителей в смесь вводят активаторы, а при необходимости и замедлители процесса вулканизации.
Механические и другие свойства резины улучшают введением в смесь активных наполнителей (сажи, двуокиси кремния, титана, окиси цинка и др.) в виде тонкоизмельченных порошков, количество которых колеблется от 15 до 100 масс, частей и более на,100 масс, частей Каучука. Неактивные наполнители (мел, тальк, каолин и др.) незначительно повышают прочностные свойства резины, но они улучшают обрабатываемость сырой резины и снижают ее стоимость.
Для улучшения обрабатываемости сырой резины, равномерного распределения ингредиентов в смеси, повышения ее эластических свойств в состав смеси вводятся мягчители или пластификаторы, которые несколько снижают прочностные, но повышают пластические свойства резины. При использовании каучуков общего назначения в качестве пластификаторов применяются углеводороды (от 5 до 30 масс, частей), органические жирные кислоты (1—2 масс, части), смолы (3—10 масс, частей), а в каучуки специального назначения— эфиры (дибутилфталат) и синтетические смолы (фенолоформальдегидные и др.).
Изделия из каучука и резины под действием кислорода воздуха даже в состоянии покоя стареют, становятся хрупкими и ломкими. Для предотвращения или замедления этого процесса в состав резиновой смеси вводят противостарители (фенолы, ароматические амины и др.). Для придания цвета изделиям из резины применяют наполнитель — коллоидальную кремневую кислоту (белую сажу) или окись цинка и красители. Пористую резину (резину, содержащую ячейки, заполненные газом) получают введением в смесь порообразователей (углекислого аммония, диазосоединений и др.), разлагающихся при нагревании с выделением газов. Кроме перечисленных выше, в изделия добавляют резиновые клеи, смазки, растворители, пудры, (для снижения слипания полуфабрикатов) и др.
Процесс изготовления резиновых изделий состоит из нескольких стадий:
приготовление сырой резиновой смеси из ингредиентов;
изготовление или формование заготовок или изделий из сырой резиновой смеси;
вулканизация изделий;
отделка изделий.
Приготовление резиновой смеси включает операции, связанные с подготовкой сырьевых материалов (развеска, дозировка сырья, прорезинивание тканей, пластикацию каучука под действием тепла и др.) и их смешение.
Смешение составляющих резиновой смеси осуществляют в резиносмесителях, червячных прессах или на вальцах
Резиновая смесь подается в вальцы между двумя валками, укрепленными в станине. Поскольку передний валок вращается медленнее заднего валка, окружные скорости вращения валков различны. При прохождении резиновой смеси через зазор между валками в ней возникают деформации сдвига, что приводит к равномерному смещению ингредиентов.
Для изготовления заготовок, деталей, трубок, прорезиненных тканей и т.д. применяются червячные прессы (шприц-машины), каландры.
Изделия сложного профиля собирают из предварительно заготовленных частей и деталей (прорезиненные ткани, металлические каркасы и т. п.), соединяя их между собой склеиванием или подпрессовкой. Отдельные изделия получают из латексов, например пористые резины (вспенивание латекса), а тонкостенные изделия (перчатки и др.) получают методом окунания формочек в латекс, с последующей его коагуляцией, сушкой и вулканизацией получаемых изделий.
Вулканизация является заключительной стадией изготовления резиновых изделий, основное назначение которой состоит в закреплении полученной формы изделием и придании изделию свойств резины.
Количество вулканизатора, вводимого в резиновую смесь, оказывает сильное влияние на свойства резины.
Большое число резиновых, резино-тканевых и других изделий подвергают вулканизации при температуре 125—180°С в аппаратах, работающих под давлением в атмосфере насыщенного пара, горячего воздуха и др.
Продолжительность вулканизации изделий зависит от температуры, давления, габаритов изделия, состава резиновой смеси, греющей среды, аппаратуры, применяемой при вулканизации. Должен поддерживаться оптимальный режим вулканизации, так как от этого в значительной степени зависят прочностные свойства резины.
Вулканизацию резиновых изделий проводят в аппаратах различного типа, устройство которых зависит от сложности изготовляемых изделий и типа их конструкции. Наибольшее применение находят вулканизационные прессы, автоклавы, камеры, аппараты барабанного типа и другие.
Изделия, полученные после вулканизации, полностью теряют свои пластические свойства, но приобретают эластичность, повышенные прочностные свойства и износоустойчивость и др.
После вулканизации все резиновые изделия подвергаются отделке. При этом устраняются заусенцы, производится зачистка, обточка, шлифовка изделий, а в ряде случаев и их окраска с целью предохранения от старения (автомобильные шины) или для улучшения внешнего вида (галоши, мячи и др.). Все изделия для определения сортности подвергаются осмотру с целью выявления дефектов и выяснения возможности их устранения без изменения качества изделий.
Определение свойств и качества изделий осуществляется лабораторными, стендовыми, эксплуатационными испытаниями. При этом определяются физико-механические свойства, тепло- и морозостойкость, долговечность, сопротивление старению и истиранию.
В настоящее время выпускается большой ассортимент резиновых изделий, свойства и назначение которых определяются в основном свойствами применяемого каучука.
В зависимости от свойств и применения резины их делят на следующие группы:
резины общего назначения (шины, обувь, ремни и др.), эксплуатируемые при интервале минус 50 — плюс 110°С; такие резины изготавливаются на основе каучуков НК, СКВ, СКИ, СКС, СКМС и др.;
теплостойкие резины (детали самолетов, машин и др.), получаемые из силиконовых каучуков и фторкаучуков;
резины, устойчивые к действию низких температур, получаемые из силиконовых и фторкаучуков;
резины, устойчивые в окислительных средах, в растворах кислот, щелочей и солей и т. д.; их готовят на основе наирита, фторкаучуков, бутилкаучуков и др.;
маслостойкие резины, устойчивые к действию нефти и продуктам ее. переработки, получаемые из фторкаучуков, бутадиен- нитрильных и других каучуков.
Наряду с этими резинами находят применение газонаполненные резины, стойкие к воздействию радиации, обладающие высокими диэлектрическими свойствами.
Дата публикования: 2015-10-09; Прочитано: 6062 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!