Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Задачи для самостоятельного решения. 8.15. Случайная величина Х имеет плотность



8.15. Случайная величина Х имеет плотность

Найти математическое ожидание и дисперсию Х.

Ответ: М (Х) = 0,5909; D (Х) = 0,0781.

8.16. Случайная величина Х имеет плотность

Найти математическое ожидание и дисперсию Х.

Ответ: .

8.17. Случайная величина Х задана плотностью распределения

Найти математическое ожидание функции (не находя предварительно плотности распределения ).

Ответ: .

8.18. Плотность случайной величины Х имеет вид

Найти коэффициент а. Вычислить моду, медиану, математическое ожидание, дисперсию, начальные и центральные моменты первого, второго и третьего порядков случайной величины Х.

Ответ: ,

8.19. Случайная величина Х задана плотностью распределения

Найти начальные моменты случайной величины Х.

Ответ: не существуют при k ³ 6.

8.20. Плотность вероятности случайной величины Х имеет вид

Найти математическое ожидание и дисперсию случайной величины

Ответ:

8.21. Случайная величина Х имеет функцию распределения

Найти математическое ожидание случайной величины .

Ответ:

8.22. По данным задачи 8.9 (при ) найти моду и медиану распределения; вероятность того, что случайная величина Х окажется в промежутке математическое ожидание и дисперсию Х.

Ответ: .

8.23. Найти математическое ожидание и дисперсию случайной величины, плотность вероятности которой имеет вид

(распределение Лапласа).

Ответ:

8.24. Случайная величина Х подчинена закону Симпсона («закону равнобедренного треугольника») на участке от – а до + а (рис. 8.10). Написать выражение плотности распределения; построить график функции распределения; найти числовые характеристики случайной величины Х: , , , . Найти вероятность попадания случайной величины Х в интервал .

 
 

Рис. 8.10

Ответ:

.

8.25. Случайная величина Х подчинена закону распределения с плотностью, которая задана формулой

Найти коэффициент асимметрии распределения.

Ответ:

8.26. Найти коэффициент асимметрии и эксцесс случайной величины, распределнной по закону Лапласа с плотностью

Ответ: ;

8.27. Случайная величина Х, сосредоточенная на интервале , задана функцией распределения . Найти моду и медиану случайной величины Х.

Ответ: ;

8.28. Найти значения для случайной величины Х, функция распределения которой

Ответ:

8.29. Кривая распределения случайной величины Х представляет собой полуэллипс с полуосями а и b. Полуось а известна. Определить b. Найти и функцию распределения .





Дата публикования: 2014-10-20; Прочитано: 5983 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...