Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные теоретические сведения. Все события делятся на детерминированные, случайные и неопределенные



Все события делятся на детерминированные, случайные и неопределенные.

Если событие наступает в эксперименте всегда, оно называется достоверным, если никогда – невозможным. Это детерминированные события.

Статистическое определение вероятности: Если в опыте, повторяющемся n раз, событие появляется mA раз, тогда относительная частота наступления события: . Р(А) – вероятность наступления события А.

Для достоверного события W: Р(W)=1. Для невозможного события Æ: Р(Æ)=0.

0 £ P(A) £ 1, т.к. 0£mA£n à 0 £ hn(A) £ 1

W mA=n hn(A)=1

Æ mA=0 hn(A)=0

Все мыслимые взаимоисключающие исходы опыта называются элементарными событиями. Наряду с ними можно наблюдать более сложные события – комбинации элементарных.

Несколько событий в данном опыте называются равновозможными, если появление одного из них не более возможно, чем другого.

Классическое определение вероятности: Если n-общее число элементарных событий и все они равновозможные, то вероятность события А:

,

где mA- число исходов, благоприятствующих появлению события А.

Теория сложных событий позволяет по вероятностям простых событий определять вероятности сложных. Она базируется на теоремах сложения и умножения вероятностей.

1) Суммой (объединением) двух событий А и В называется новое событие А+В, заключающееся в проявлении хотя бы одного из этих событий.

2) Произведением (пересечением) двух событий А и В называется новое событие АВ, заключающееся в одновременном проявлении обоих событий. А*В=АВ, АА=А, АВА=АВ.

3) Событие А влечет за собой появление события В, если в результате наступления события А всякий раз наступает событие В. АÌВ

А=В: АÌВ, ВÌА

Два события называются несовместными, если появление одного из них исключает возможность появления другого.

Если события несовместны, то АВ=Æ.

События А1, А2, …Аn образуют полную группу событий в данном опыте, если они являются несовместными и одно из них обязательно происходит:

AiAj=Æ (i¹j, i,j=1,2…n)

A1+A2+…+An=W

-событие противоположное событию А, если оно состоит в непоявлении события А.

А и - полная группа событий, т.к. А+ =W, А =Æ.

Теорема сложения вероятностей.

Вероятность суммы несовместных событий равна сумме вероятностей событий:

Р(А+В+С+…) = Р(А) + Р(В) + Р(С) +…

Следствие. Если события A1+A2+…+An - полная группа событий, то сумма их вероятностей равна 1.

P(A+ ) = P(A) + P() = 1

Вероятность наступления двух совместных событий равна:

Р(А+В) = Р(А) + Р(В) - Р(АВ)

Теорема умножения вероятностей. Условные вероятности.

Опыт повторяется n раз, mB раз наступает событие В, mАВ раз наряду с событием В наступает событие А.

hn(B) = hn(AB) =

Рассмотрим относительную частоту наступления события А, когда событие В уже наступило:

- условная вероятность события А по событию В – вероятность события А, когда событие В уже наступило.

Свойства условных вероятностей.

Свойства условных вероятностей аналогичны свойствам безусловных вероятностей.

1. 0 £ Р(А/В) £ 1, т.к. ; АВ Ì В, Р(АВ) £ Р(В)

2. Р(А/А)=1

3. ВÌА, è Р(А/В)=1

4.

5. Р[(A+C)/B] = Р(А/В) + Р(C/В) – Если события А и С несовместны

Р[(A+C)/B] = Р(А/В) + Р(C/В) - Р(АC/В) – Если события А и С совместны

Теорема. Вероятность произведения двух событий равна произведению вероятности одного события на условную вероятность другого.

События А и В называются независимыми, если появление или непоявление одного из них не сказывается на появлении другого.

- критерий независимости событий

События А и В называются независимыми тогда, когда Р(АВ) = Р(А)*Р(В)

Формула полной вероятности.

Вероятность события В, которое может произойти совместно только с одним из событий Н1, Н2, …Нn, образующих полную группу событий, вычисляется по формуле:

События А1, А2, …Аn называют гипотезами.

Теорема гипотез (формула Байеса).

Если до опыта вероятности гипотез были Р(Н1), Р(Н2)…Р(НN), а в результате опыта произошло событие А, то условные вероятности гипотез находятся по формуле:

Схема последовательных испытаний Бернулли.

Проводится серия из n испытаний, в каждом из которых с вероятностью р может произойти событие А, с вероятностью q=1-р событие .

Вероятность наступления события А не зависит от числа испытаний n и результатов других испытаний.

Такая схема испытаний с двумя исходами (событие А наступило либо не наступило) называется схемой последовательных испытаний Бернулли.

Пусть при n испытаниях событие А наступило k раз, (n-k) раз событие .

- число различных комбинаций события А

Вероятность каждой отдельной комбинации:

Вероятность того, что в серии из n испытаний событие А, вероятность которого равна р, появится k раз:

- условие нормировки.

Если k0 – наивероятнейшее число, то оно находится в пределах:

np-q £ k0 £ np+q

Если число (np+q) нецелое, то k0 – единственное

Если число (np+q) целое, то существует 2 числа k0.

Предельные теоремы в схеме Бернулли.

1. Предельная теорема Пуассона. При р»0, n-велико, np= l £ 10.

Формула дает распределение Пуасона, описывает редкие события.

2. Предельная теорема Муавра-Лапласа.

0 £ p £ 1, n –велико, np>10

- стандартное нормальное распределение

3. Предельная интегральная теорема Муавра-Лапласа.

В условиях предыдущей теоремы вероятность того, что событие А в серии из n испытаний наступит не менее k1 раз и не более k2 раз:

- функция Лапласа

Следствие:

Случайная – величина, которая в ходе опыта принимает то или иное значение из возможных своих значений, меняющееся от опыта к опыту и зависящее от множества непредсказуемых факторов.

Если случайные события характеризуют процесс качественно, то случайная величина – количественно.

Случайная величина – численная функция, задаваемая на множестве элементарных событий. На одном множестве может быть несколько случайных величин.

Дискретная случайная величина (ДСК) – величина, принимающая счетное (конечное или бесконечное) множество значений.

Непрерывная случайная величина (НСВ) – случайная величина, значения которой образуют несчетные множества. (Например, расход бензина на 100 км у автомобиля Жигули в Нижнем Новгороде).

Задать св – значит указать все множество ее значений и соответствующие этим значениям вероятности. Говорят, что задан закон распределения случайной величины.

Случайная величина может быть задана несколькими способами:

1. Табличный.

Х a1 a2 аn
Р p1 p2 pn

Значения случайных величин в таблице ранжируются, т.е. указываются в порядке возрастания.

Недостпаток табличного способа в том, что он пригоден только для случайных величин, принимающих небольшое количество значений.

2. Функция распределения F(x) = P(X<x) или интегральный закон распределения.

Указывается вероятность того, что случайная величина принимает значение < x.

Х a1 a2 a3 аn-1
Р p1 p2 p3 pn-1
F(x) p1 p1+p2 p1+p2+p3 p1+p2+…+pn-1

При увеличении значения случайной величины, количество ступенек функции F(х) возрастает, уменьшается их высота и в пределе при получаем гладкую непрерывную функцию F(х).

Свойства функции F(х).

1. Неотрицательна. 0£ F(х)£1

2. Неубывающая F(х2)> F(х1) при х21

3.

4. Р(a<x<b) = F(a) – F(b) Вероятность того, что значение х попадет в интервал (а,b) определяется разностью значений функции на концах интервала.

Наряду с F(х) вводится f(x) - функция плотности вероятности или дифференциальный закон распределения:

Свойства функции f(x):

1. Неотрицательна. (т.к. F(x) неубывающая, f(x)³0)

2. Площадь фигуры под кривой на интервале (a,b) равна:

- условие нормировки функции f(x).





Дата публикования: 2015-01-10; Прочитано: 1295 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.013 с)...