Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вывод дифференциального уравнения



Рассмотрим элемент стержня (рис.2.3).

 
 


Рис.2.3

Так как боковая поверхность стержня теплоизолирована, то элемент может получать тепло только через поперечные сечения и . Обозначим через площадь поперечного сечения, а через и - нормали к сечениям и , направленные внутрь элемента . Тогда по закону Фурье тепло, поступившее в элемент за время через сечения и , запишется соответственно в виде ,

;

при этом мы учли, что направление совпадает с направлением оси Ox, а направление противоположно ему. Складывая последние выражения и применяя теорему о конечных приращениях, запишем общее количество тепла, полученное элементом за время в виде

, .

По закону сохранения энергии все это тепло идет на нагревание элемента, поэтому его можно выразить формулой (2.7)

,

Приравнивая оба выражения для и сокращая на , затем переходя к пределу при , получим дифференциальное уравнение теплопроводности .

Если стержень однородный, т.е. - постоянные, то уравнение можно записать в виде

, (2.10)

где .

Начальное условие имеет вид , (), (2.11)

где - начальное значение температуры.

Приступаем к выводу граничных условий. Очевидно, имеем

а) , (2.12)

где и - температуры концов стержня.

В случае б) проводим те же рассуждения, что и при выводе уравнения (2.10), для граничных элементов и .

Обозначим через количество тепла, поступающего в единицу времени через сечение . Тогда уравнение теплового баланса для элемента запишется в виде

.

Сократив на и перейдя к пределу при , получим

б) . (2.13)

Совершенно аналогично получаем

, (2.14)

где - поток тепла через сечение .

В случае теплоизолированных концов и, следовательно:

б’) (2.15)

Наконец, случай теплообмена в) можно рассматривать как частный случай случая б) при ;

;

(см. закон Ньютона), где - коэффициенты теплообмена, а - температуры среды у концов стержня. После этого получаем из (2.13), (2.14):

в) (2.16)

, где , . (2.17)

Итак, задача формулируется следующим образом. В области найти непрерывную функцию так, чтобы она удовлетворяла уравнению (2.10), начальным условиям (2.11) и граничным условиям одного из типов (2.12), (2.13), (2.14), (2.15) или (2.16), (2.17).

ЗАДАЧА 8. Поставить задачу об определении температуры стержня при начальных и граничных условиях предыдущей задачи для случая, когда на боковой поверхности стержня происходит теплообмен по закону Ньютона со средой, температура которой является заданной функцией времени.

Указание. Дифференциальное уравнение и граничные условия выводятся так же, как в задаче 7, но надо учесть, что теперь тепло поступает в элемент не только через его торцы, но и через боковую поверхность.

ЗАДАЧА 9. Вывести уравнение для температуры тонкой проволоки, нагреваемой постоянным электрическим током, если на еe поверхности происходит конвективный теплообмен по закону Ньютона с окружающим воздухом, имеющим известную температуру.

Поставить задачу об определении температуры в этом проводе, если концы его зажаты в массивные клеммы с заданной теплоемкостью и очень большой теплопроводностью.

Решение. Дифференциальное уравнение выводится так же, как и в задаче 7, только теперь к количеству тепла, которое получает элемент проволоки через торцы и боковую поверхность, надо прибавить количество тепла, которое выделяется в элементе электрическим током за время : , где - сила тока, - сопротивление единицы длины провода, - коэффициент пропорциональности.

Указанное дифференциальное уравнение имеет вид

, (2.18)

где - имеют тот же смысл, что и в задаче 8 (см. ответ). Начальное условие, как и в задачах 7 и 8, имеет вид , (2.19)

где - температура проволоки при .

Выведем граничные условия.

Рассмотрим тело T, состоящее из граничного элемента и примыкающей к нему клеммы. Это тело получает тепло через сечение , через боковую поверхность элемента и в результате прохождения тока через элемент (теплом, которое выделяет ток в клемме и которое теряется клеммой в результате теплообмена можно пренебречь). Суммарное количество тепла, получаемого телом T, составит

.

Это тепло идет на изменение температуры тела T и, следовательно, равно

,

при этом мы считаем, что температура во всех точках тела T постоянна, так как мало, а клемма обладает очень большой теплопроводностью. Приравнивая эти значения , деля результат на и переходя к пределу при , получим

. (2.20)

Совершенно аналогично получим условие на другом конце:

, (2.21)

где - теплоемкость клеммы на конце .





Дата публикования: 2014-11-02; Прочитано: 1187 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...